THE ETHICAL IMPERATIVE

106TH ANNUAL MEETING
DENVER, COLORADO

CO-CHAIRS
AMIR AMERI
REBECCA O’NEAL DAGG

PROJECT PROCEEDINGS
Conference Description

In its material, cultural, and economic effects, architecture poses essential and unavoidable ethical quandaries and challenges. In its performative capacity to express ideology, architecture is inexorably entangled in questions of power and legitimation. As part of an interconnected global economic infrastructure that consumes natural resources at an alarming rate, architecture raises new and pressing questions with which educators, practitioners, and students must engage.

Given that there is an infinitely ethical dimension to every aspect of architecture, the 106th ACSA Annual Meeting will seek to solicit wide reflection on the ethical challenges of architecture in a world in flux.

Architecture as practice and as discipline and pedagogy struggles to solve problems and to advance culture. Within this struggle the discipline faces an ambiguity of values and agenda. The relationship between these two purposes, problem solving and cultural advancement, often exists as a rift, a great chasm filled with nuanced dilemmas related to ethics and power.

Join us for the ACSA Annual Meeting in Denver 2018 to engage these and other fundamental questions that face educators across the curriculum.
Table of Contents

1 Plateau: Reactivating Ground in the Damour Plains
Carla Aramouny
Nada Borgi
Sandra Al Rishani

3 Megalith: A Deterrent
Jean Jaminet
Richard Dempsey
Zach Beale

5 The P.I.G. (Philmont Icarian Guild)
Julia Sedlock
Mark Ronwtree

7 F22 Foto Space
Jason F. Carlow

9 Desert House
Hans Peter Tursack

11 Mass-Customized Longboard: Mass Customization and Identity in Skate Culture
Brian Kelly

13 Architecture as Performing Art: Puddin’ and the Grumble
Peter Olshavsky

15 Transforming a ‘Non-Place’ Through ‘Architecture as Landscape’
Saqiq Iqbal Meghna
SUVRO SOVON CHOWDHURY

17 Slow Waste: Wood Pallets in the Expanded Field
Leonard D. Yui

19 No Man’s Land
Emily Guo

21 Rhizolith Island: Floating Concrete Breakwater for Mangrove Restoration
Julie Larsen
Roger Hubeli

23 Reorienting the Rural: The Great Plains Shelterbelt in an Expanded Subjective Field
Roy C. Cloutier
Nicole Sylvia

25 Constellations of the In-between: Architectural Speculations in Contested Urban Interstices
Lorinc Vass

27 Periphractic Space: Mapping Racial Construction in North American Urban Landscapes
James C. Forren

29 Another Stack
Erik Herrmann
Ashley Bigham

31 Unconventional Structures: Torodial Plume
Jorge Adan Ituarte-Arreola
Ryan Lee Thomas

33 iterative Garden
Julia Jamrozik

35 Small Scale Big Impact: Connecting Communities to the Urban Landscape through Neighborhood Parks
William Joseph Doran
ARCHITECTURE IN AN EXPANDED FIELD
In 2016, a controversial competition was launched by the Lebanese Order of Engineers and Architects, on a land purchased in the coastal town of Damour south of Beirut. The lot, historically an agricultural field of banana plantations fertile with the nearby Damour River, is a contested agricultural plain, involving a planned but unutilized transit line and a stretch of public sandy beach that is slowly being privatized. The area embodies a seafront and suburb in uncontrolled mutation. The banana fields and public domain are slowly disappearing and instead high-end gated resorts are being developed. A higher allowable built-up area in this zone is also radically changing its fabric.

The competition called for the design of a private clubhouse for the Order’s members, ignoring the impending controversies surrounding the site. The local code generally ensures the preservation of any existing trees on site, however the land had been intentionally and illegally stripped of its plantations in unknown circumstances. Our approach was clear: we had to make a counter statement against this loss of biodiversity, one that positions the Order of Engineers and Architects as a key advocate for ecological preservation and public space, critiquing their effectively controversial endeavor as implicated by their competition’s brief.

We were interested thus in revoking the missing fields by recreating a single terrain that houses all needed functions underneath it, while supplanting the site with its natural cover. Similarly, we sought to regain the public access to the beach, allowing longitudinal and lateral connectivity on the site.

Our winning scheme, Plateau, is designed as a raised planted platform, integrating with the natural sloped terrain at three edges, and incorporating the various outdoor activities of the clubhouse on its roof. This architectural strategy creates a habitable and cultivated mat building, allowing a visual and physical connection from the larger urban context to the sea. A central circulation spine cuts through the building linking the upper level ground entrance to the lower beach levels. A lateral passageway below the main pool decks creates a horizontal link for the public beach, working against the privatization aim of the original brief. The spaces of transition between the multiple levels and the open courtyards linking to the indoor programs, bring forth connectivity and potential encounters. Various circulation spines, slow and fast, horizontal and vertical in between the natural landscape patches, allow the roof to be a vital entity in the life of the building and the ecology of the area.

The design also brings together various strategies that reduce the impact of the project on the environment and its energy consumption by means of passive and active methods. It attempts to be harmonious with the natural features, and to benefit from integrating the construction within the insulating ground. It enforces the use of locally sourced materials and native plant species, and ensures good climatic conditions within the indoor spaces, by maximizing light and cross ventilation through the courtyards and access spines.
Plateau is a raised planted platform, integrating with the natural sloped terrain at three edges, and incorporating the various outdoor activities of the clubhouse on its roof. This architectural strategy creates a habitable and cultivated mat building, allowing a visual and physical connection from the larger urban context to the sea. A central circulation spine cuts through the building linking the upper level ground entrance to the lower beach levels. A lateral passageway below the main pool decks creates a horizontal link for the public beach, working against privatization. The spaces of transition between the multiple levels, the open courtyards linking to the indoor programs, bring forth connectivity and potential encounters. Various circulation spines, slow and fast, horizontal and vertical in between the natural landscape patches allow the roof to be a vital entity in the life of the building and the ecology of the area. The design also brings together various strategies that reduce the impact of the project on the environment and its energy consumption, by means of passive and active methods. It attempts to be harmonious with the natural features, and to benefit from integrating the construction within the insulating ground. It maximizes the use of locally sourced materials and native plant species, and ensures good climatic conditions within the indoor spaces, by maximizing light and cross ventilation through the courtyards and access spines.

PLATEAU

Spa tour or *plateau*
LANDMARKS FOR A NUCLEAR WASTE ISOLATION SITE

A landmark that circumvents consciousness and compels physiological and instinctive responses evades the communication barriers associated with inevitable loss of meaning.

INTRODUCTION

This project proposes landmarkers for a nuclear waste isolation site east of Carlsbad in the desert of New Mexico. Beneath this site lie millions of barrels of radioactive waste, which are required to remain undisturbed for the duration of a ten-thousand-year decay process. As an alternative approach to the monument-meaning problem in architecture, the proposed landmarkers avoid the tendency to assert meaning through immediately consumable metaphors or simple singular associations, instead retain their mysterious character over time and evade total comprehension.

Megalith is a foreboding field of wind-driven subsonic stelae. The shapes of the stelae have no explicit historic reference, aside from the inclination to stand large stones upright, marking the ground for different reasons. For millennia, these mysterious monuments have provoked the proliferation of innumerable and incredible conception-myths ranging from prehistoric societies to medieval magicians and even alien races. This tendency works in favor of the nuclear waste isolation site, as it has in the past, as a warning beacon or marker of death, where speculation about place and function are continually reproduced.

STELAE & SARCOPHAGUS

The stelae are cast in magnesium phosphate concrete, giving them a dull metallic luster, and helping to prolong their lifespan. Contoured voids within the masses capture and distort prevailing winds, creating harmonic resonance chambers that emit variable resonant and dissonant vibrations at 19 hertz, colloquially known as the “fear frequency.” Density of the field and harmonics of the chambers intensify from the perimeter of the site inward. At lower concentrations, the field provokes subtle apprehensiveness and significant reflection at the periphery. Intensification and incongruence of these stimuli deter interlopers, creating an uninhabitable void at the center of the site for the duration of the decay process.

The buildings at the center of the site, containing access shafts to the waste storage vaults, are covered with a new structural skin. This sarcophagus, adopting a term from the analogous Chernobyl site, is sheathed in a synthetic sapphire mirror to resist scratching from windblown sand. The facade is imagined as an incredibly low-tech Klingon cloaking device that confounds the ideas of literal and phenomenal transparency. Its platonic form removes architectural registration and human scale from the buildings. The filleted edges and reflective qualities of the mirrored panels distort its surroundings, creating a material indeterminacy intended to further conceal its reality.

PETRIFICATION

In this alternate reality, structures are worn by environmental exposure and age, viewed in an abandoned state much further into the future or possibly following a mass-extinction event. The atmospheric amplification of the site along with speculative sensory reception of the structures provoke a curated experience of irrational fear and subjective petrification. This static, yet irritated, state of the subject challenges the hegemony of movement or dislocation that have previously characterized its dubious relation to the architectural object. The physiognomy of this site elicits a tangible cultural resonance, where local folklore and legends of place continually replenish meaning over time.
The P.I.G. (Philmont Icarian Guild)

Like many small towns in post-industrial America, Philmont, NY is a collection of subsidized housing, empty storefronts and residents dependent on welfare benefits, burdened by drug addiction and rapt in nostalgic longing to be great again. And like similar towns, the flipside of Philmont’s darkness bares a hidden magic -- underground sluices, secret passages, a labyrinth, ruins, a waterfall, a manmade lake with a vortex, bald eagles, and snapping turtles – in a network of abandoned industrial infrastructure and an ecosystem of creatures that have claimed it as their own.

Located two hours north of New York City, Philmont is at the heart of a rapidly gentrifying agricultural community that benefits from city dwellers who retreat here to enjoy a simpler life of farmer’s markets and butcher’s shops. Despite proximity to resources and investors, the visibility of its poverty has prolonged Philmont’s economic recovery, preventing the kind of gentrification that alienates and displaces the most vulnerable of residents. In the meantime, a local grassroots organization, has worked to establish Philmont as a Brownfield Opportunity Area (B.O.A.), funding a comprehensive economic redevelopment plan that will open up future opportunities for projects within the village, including the restoration of its 50 acre reservoir that once powered 15 knitting mills within the village.

Our proposal for the Philmont Icarian Guild (The P.I.G.) is a radically inclusive ideas incubator that will serve as one of several major nodes in the B.O.A. redevelopment plan. In the context of the village plan, the P.I.G. will exist as a dispersed campus of various sized buildings that plugs into the existing framework of historic industrial infrastructure. The largest is a 4000 square foot structure that will house workshops, gallery, retail units and affordable housing units. A neighboring building will provide additional office space and housing. Smaller kiosks will be located on a nearby lake-front property for programming such as a fish and chips shack, a golf cart and boat rental, and a laundry station. The purpose of these smaller kiosks in the context of the P.I.G.’s larger mission is to provide recreational amenities at a scale that can be supported by the existing village economy, as well as flexible job opportunities for local residents in the process of re-entry following rehabilitation and incarceration.

The P.I.G. experiments with a new model of business development and job training, where the group absorbs risks and shares rewards typically associated with individual innovation and entrepreneurship. Linked to existing initiatives within the village and around the country, the P.I.G. is a new form of community institution, operating with a zero-barrier entry policy, open to anybody with an idea and the ambition to make it real. By providing judgment-free workspace, technical support, mentorship and skills training, the P.I.G. offers its members agency and opportunity in a rural community where both are scarce. To behave like Icarus might appear rash or foolhardy, but the willingness to fly too close to the sun without fear of failure is priceless.
Like many small towns in post-industrial America, Philmont, NY is a marginalized collection of subsidized housing, empty storefronts and residents dependent on welfare benefits, burdened by drug addictions and stuck in nostalgic longing to be great again. Unlike many others, the Republic of Philmont’s darkness has its hidden magic – underground ducts, secret passages, a labyrinth, ruins, a waterfall, a man-made lake with a vortex, bald eagles, and snapping turtles – in a network of abandoned industrial infrastructure and an ecosystem of creatures that have claimed it as their own.

Located two hours north of New York City, Philmont is at the heart of a rapidly gentrifying agricultural community that benefits from city dwellers who retreat here to enjoy a simpler life of farmer’s markets and butcher’s shops. Despite proximity to resources and investors, the visibility of its poverty has prolonged Philmont’s economic recovery, preventing the kind of gentrification that allows and displaces the most vulnerable of residents. In this situation, a local grassroots organization has worked to establish Philmont as a Brownfield Opportunity Area (B.O.A.), funding a comprehensive economic redevelopment plan that will open up future opportunities for projects within the village including the restoration of its 50 acre reservoir that once powered 15 knitting mills within the village.

Our proposal for the Philmont Icarian Guild (The P.I.G.) is a radically inclusive social incubator that will serve as one of several major nodes in the B.O.A. redevelopment plan. In the center of the village plan, the P.I.G. will exist as a dispersed network of various sized buildings that plug into the existing framework of historic industrial infrastructure. This largest is a 4000 square foot structure that will house workshops, gallery, retail units and affordable housing units. A neighboring building will provide additional office space and housing. Smaller kiosks will be located on a waterfront property for programming such as a fish and chips shack, a golf cart and boat rental, and a laundry station. The purpose of these smaller kiosks in the context of the P.I.G. is to provide recreational amenities at a scale that can be supported by the existing village economy, as well as flexible job opportunities for local residents as they prepare for or entry following rehabilitation and incarceration.
F22 Foto Space

JASON F. CARLOW
American University of Sharjah

Located within adjoining floors of an office tower above the bustling streets of the Causeway Bay district in Hong Kong, the F22 Foto Space is a gallery and cultural hub for the exhibition and incubation of photography and design. The gallery is a less formal extension of the F11 Photography Museum, located a few minutes away in the Happy Valley neighborhood of Hong Kong. By comparison to the global scope of the F11 Museum, F22 is meant to promote young, local photographers and artists from the Hong Kong and East Asian region. The brief for the space included a flexible event and gallery space, a small bookshop, office space for curators, a climate controlled photo archive room, a social space for staff and a conference room and lounge for meetings and events. The project is an interior design for the adaptive reuse of a former night club and commercial office space.

The focal points of the design include a circular stair that connects the two floors of gallery space and a rotating entry door in the form of a camera lens. The design team worked closely with engineers to remove a large section of the existing concrete floor plate and translate camera components into structural elements. The stair features a structural balustrade that hangs from a reinforced plate in the ceiling above. The twisting bars of the balustrade create transparency through the staircase and elegantly curve inward to blend into each of the stair treads. The base of stair is inscribed with a pattern that references a camera shutter mechanism and the details and mechanical connections of the stair are also modeled on the parts of a Leica camera body. Inspired by camera aperture, the circular staircase plays with light, shadow and speed. The overall structure creates a play between transparency and opacity that evokes the medium of photography and creates a unique backdrop for events.

To create a cinematic entrance, the design team studied camera development and used design elements from various generations of camera lenses to design the door. The aperture in the ceiling above the door is a lighting feature that controls the amount of light at the entrance space. Like early camera bodies and lenses, the spiral stair and entry door are fabricated from brass and then painted with black. Like vintage cameras, over time the black paint will wear off, revealing the brass underneath.

Other notable features of the space include a sleek bookshop that disappears behind a display wall, display screens and lighting integrated into the ceiling coffers. An espresso bar named Café 22 offers a gathering place for informal visits and a meeting point for cultural activities. The two galleries on upper and lower levels are designed in black and white, forming a dialogue between the two floors.
Located within adjoining rooms of an office tower above the bustling streets of the Causeway Bay district in Hong Kong, the F22 Foto Space is a gallery and cultural hub for the exhibition and incubation of photography and design. The gallery is a less formal extension of the F11 Photography Museum, located a few minutes away in the Happy Valley neighborhood of Hong Kong. By comparison to the global scope of the F11 Museum, F22 is meant to promote young, local photographers and artists from the Hong Kong and East Asian region. The brief for the space included a flexible event and gallery space, an office space for curators, a climate-controlled photo archive room, a social space for staff and a conference room that doubles as a lounge for exhibitions. The design team worked closely with engineers to remove a large section of the existing concrete floor plate and translate camera components into structural elements that hang from a suspended plate to the ceiling. The twisting bars of the balustrade create transparency through the staircase and elegantly curve inward to blend into each of the stair treads. The base of the stair is inscribed with a pattern that references a camera shutter mechanism and the details and mechanical connections of the stair are also replicated on the gallery plates. The handrail is inspired by camera film, with the actual film roll fabricating a play between transparency and opacity that makes the medium of photography and creates a unique backdrop for events.

To create a cinematic entrance, the design team studied camera development and used design elements from various generations of camera lenses to design the door. The aperture in the ceiling above the door is a lighting feature that controls the amount of light at the entrance space. Like early camera bodies and lenses, the spiral stair and entry door are fabricated from brass and then painted with black. Over time, the black paint will wear off, revealing the brass underneath. Other notable features of the space include a sleek bookshop that disappears behind a display wall, display screens and lighting integrated into the ceiling coffer, an espresso bar named Café 22, and an event space that doubles as a gathering place for informal visits and meeting points for cultural activities. The two galleries on upper and lower levels are designed in black and white, forming a dialogue between the two floors.
The formal argument of the Desert House project begins with a cube conceptualized as a flat, unfolded box, composed of six, two-dimensional surfaces. Each surface is structured with a grid, and understood as a graphic problem. Taking a cue from Swiss Modernist graphic design manuals, the surfaces of the box are cast as improvisatory games where particulate elements are distributed within the bounds of a sixteen or nine-square grid. Four drawings, nine elevation studies, two furniture elements and a short pamphlet construct a visual narrative around the design at different scales and levels of resolution.

The aesthetic program of the house is situated within a historical, formalist discourse exploring the relationship between painting or graphic problems, architectural surfaces, and tectonics. The narrative begins with the collapse of hard-edged, geometric painting and Modernist architecture through the De Stijl discovery of the “screen” as a primary or base compositional element in the conception of three-dimensional form. The Postwar neo-avant garde took this problem as the foundation of their gestaltist investigations of complex elevation logics and striated spaces in plan. The ambition of the formal language embedded in the Desert House is to offer an elaboration or extension of these theories catered to the speed, surface-centric material sensibilities and graphic, hyper-flatness that characterize a more contemporary elevation sensibility.

The site is an experiment with a loose, but finite grammar of objects, architectural elements, and graphic fragments distributed in a (primarily) plan-based matrix. Ambiguous in scale and program, different iterations recall game-board layouts, athletic fields, and vacant stage sets. The site also embraces the semantically charged obstacle course-gardens or “complexes” developed by Post-Minimal sculptors like Alice Aycock, Nancy Holt, Mary Miss and Robert Morris as a formal type. Like the complexes of that era, the compositions that make up Graphic Fields are open-ended aggregations of overlapping visual systems; movements between structure and informality suggest growth and change.
DESERt HOUSE

The formal argument of the Desert House project begins with a cube conceptualized as a flat, unfolded box, composed of six, two-dimensional surfaces. Each surface is structured with a grid, and understood as a graphic problem. Taking a cue from Swiss Modernist graphic design manuals, the surfaces of the box are cast as improvisatory games where particulate elements are distributed within the bounds of a sixteen or nine-square grid. Four drawings, nine elevation studies, two furniture elements and a short pamphlet construct a visual narrative around the design at different scales and levels of resolution.

The aesthetic program of the house is situated within a historical, formalist discourse exploring the relationship between painting or graphic problems, architectural surfaces, and tectonics. The narrative begins with the collapse of hard-edged, geometric painting and Modernist architecture through the De Stijl discovery of the “screen” as a primary or base compositional element in the conception of three-dimensional form. The Postwar neo-avant garde took this problem as the foundation of their gestaltist investigations of complex elevation logics and striated spaces in plan. The ambition of the formal language embedded in the Desert House is to offer an elaboration or extension of these theories catered to the speed, surface-centric material sensibilities and graphic, hyper-flatness that characterize a more contemporary elevation sensibility.

The site is an experiment with a loose, but finite grammar of objects, architectural elements, and graphic fragments distributed in a (primarily) plan-based matrix. Ambiguous in scale and program, different iterations recall game-board layouts, athletic fields, and vacant stage sets. The site also embraces the semantically charged obstacle course-gardens or “complexes” developed by Post-Minimal sculptors like Alice Aycock, Nancy Holt, Mary Miss and Robert Morris as a formal type. Like the complexes of that era, the compositions that make up Graphic Fields are open-ended aggregations of overlapping visual systems; movements between structure and informality suggests growth and change.
“Unlike mechanical making, digital making is rarely matrix-based, hence using file to factory digital technologies is theoretically possible to mass produce variations, within limits, at no extra cost. As we know, digital file to factory technologies offer no economies of scale; the unit cost of the first item in a series is the same as the unit cost of all subsequent ones, whether they be identical or all different.”

–Mario Carpo, The Second Digital Turn; Design Beyond Intelligence

Prior to the development of the architect proper in the late 1500’s and early 1600’s, authorship was a shared condition. The Medieval construction of Gothic cathedrals, for example, was executed over several years and saw many people making decisions with regards its construction. The rise in a desire for ownership, recognition, and compensation paralleled in other disciplines seeking copyright ownership (ie. literature) translated to architecture as part of the development of the profession. In the case of architecture, the architect became a single author credited for all compositional decisions much like a painter to a master work. Fast forward to the end of the 20th century, the open design movement celebrated shared authorship most notably in software development. The Linux operating system, initially authored by Linus Torvalds, was later refined by a much larger group through open-source design approaches as source codes were shared and suggested changes were reviewed and accepted by the community at large. The open design movement has arrived in architecture and is challenging the trajectory of future professional practice.

In the culture of skateboarding, identity is critical. Moves are mimicked, and subsequently owned through slight variations in the technique or style. The ability to offer a new spin on existing tricks is ingrained into the DNA of the skater. Identity is communicated by several means (clothes, music, tattoos, etc.) but can also be seen through the bottom surface of the skate deck which is often filled with stickers communicating preferences and opinions. As well, this surface acts as bragging rights exhibiting battle scars of countless attempted tricks which leave imperfections in the surface leading to structural failure. The desire for identity and the varied surface conditions of the bottom surface became a point of departure for an investigation into shared authorship in the design of a longboard.

Ongoing design investigations are working through the ability for a mass-customized parametric definition which can be altered through a simple online interface. This interaction, controlled in its degree of variation to not offer solutions which might sacrifice structural integrity, creates a unique shape and surface which is CNC milled from of vertical laminated recycled hardwood. This research proposes user engagement with smart parameters offering shared authorship between the designer and user. With the longboard seen as a microcosm of architecture due to its compositional and performative requirements, this research is moving into the design of mass-customized architectural proposals offering shared authorship opportunities in the design process.

ENDNOTE

Architecture as a performing art was the focus of a second-year architecture studio project that enabled students to design, construct 1:1 prototypes, and fabricate inflatable elements for a play: Puddin’ and the Grumble. The project was an interdisciplinary collaboration that situated beginning design students in a creatively risky setting at the junction of introductory architectural knowledge, knowledge creation (research), and multiple communities beyond the traditional design studio.

Puddin’ and the Grumble is a play that examines issues surrounding childhood hunger and food insecurity (approximately 19% of children in our university’s county experience these issues and 15.8 million nationally). The play tells the story of a 10-year-old girl whose mother works a day and night job. Needing to live with her grandma, Puddin’ misses her mother, struggles with 5th grade math, and feels as empty as her stomach. Added to this she’s being followed by the Grumble, an obnoxious creature symbolizing her hunger. Written by Becky Boesen and David Von Kampen. Inspired by the kids of the Clinton Elementary Creative Club. Commissioned and produced by the Lied Center for Performing Arts, it was created by Becky Boesen and Petra Wahlqvist as part of the GROW A SHOW program in collaboration with ASCAP in Los Angeles, the Lincoln Food Bank, the College of Fine and Performing Arts, and the second-year architecture students in the College of Architecture.

The project was truly collaborative. The script, music, and actions informed the conception, development, and realization of the architectural elements and vice-versa. For the studio’s deliverables, the students were required to generate a research pamphlet (summarizing their findings), drawings (from process to scalar documents), models, 1:1 prototypes for proof of concept, and the final working elements at 1:1 scale that were used on stage. Not only did the students have to consider all of the structural, material and logistical issues of their work but also they had to responsibly engage with larger communities (kids, audience, etc.) that demanded ethical and social consideration.
ARCHITECTURE AS PERFORMING ART

architecture as a performing art was the focus of a second-year architecture studio project. several product designers in design courses, led 12 participants, and learned working building elements for new play. the project was an interdisciplinary collaboration among several beginning design students in a creative clay setting to the construction of relatively archetypal architecture. through collaborative research, analysis, and negotiation, the students were enabled to gain an understanding of the structural, narrative and preliminary issue of the play, and were able to think through the architectural and protoarchitectural elements that were designed and integrated through the project.

in the end, the students were enabled to visualize the fragment of the script and grasp the idea of a text in various physical and conceptual origami. the meaning of the stage. form in the text generated the design reactions, design elements, and methods. this was all in the context of the physical and social issues.

finally, the writing process was fabricated through the heater, as an "object" of the students' ideas and activities.

in the second phase, three architectural interventions was developed for specific scenes of the play. the scenes had various design needs in combination with the multiple social and educational conditions of the play and related issues from one of the primary ones, the line between architecture, performance, and narrative. the design was the result of the architectural elements of the project.

in the conclusion, the students were enabled to develop and fabricate the idea of the script, one of which was used in the actual project. the students were enabled to think, through the various means of combination, to make sense of various elements, and to cope with various interventions and stages in a gradual process.
Dhaka, because of its alarming population density, limited land area and unplanned developments, faces challenge to posit an alternative approach towards designing urban space, which may eventually manifest into a resilient city. Through the design of ‘Architecture as Landscape’ an effort was made to transform a leftover open space situated within a zone of historic, cultural and political significance into a ‘place’ for the ‘people’ where the ‘Genius Loci’ itself directed the design elements. The approach that integrates nature and the urbanites will be discussed focusing on the architectural interventions to offer interactive public space. The project dealt with design ideas, considerations and strategies intertwined with challenges due to constrained budget. The ‘site’ itself being located at the heart of Dhaka city, witnessed the major movements in course of the history of Bangladesh. The project unified not only the surrounding disintegrated built forms but also the tangible and intangible aspects of the people. The approach as mentioned is based on two basic principles; Recollecting the Spirit of the Place and Revisiting the Spirit of the People. Focus has been given on enhancing the latent possibilities of the ‘non-place’ itself by a deliberate design strategy of evolving the ultimate landscape formation from on-site design decisions responding to its immediate surrounding structures of cultural, historic and programmatic significance as well as existing trees.

Before commissioning the architects, the initial intention of client was to ‘beautify’ the unused site by conventional means of adding flower bearing plants, lights and paved pedestrian pathway(s). Later a more holistic idea was thought out to convert the site through an approach of place-making with the intention of creating a public place to promote healthy environment to the users. Infusion of utilitarian features and functions were new introduction to the place which demanded speculations and analysis on user profile, activity pattern and scale of usage. A combination of Semiotics and Technical approach ensures a sustainable scenario both in aesthetic and usability. The constraints had manifolds which were to be dealt with two definitions Semiological and Technical. Semiological definition described about the ‘idea’ of that space to be transformed and the conception behind the phenomenological experiences of that space will contain. Technical aspects were about the material selection, sustainability of the aesthetic, providing service facilities, all those criteria for an urban space.

Addressing Culture, Climate and Ecology, the approach emerges from the efforts of establishing positive feedbacks to the city fabric rather than just to fit into the existing unplanned growth. Ever since the project has been opened for public the once unattended and insignificant open space started catering as a meeting place for the students, faculties and other users of the University Campus. By transforming a ‘non-place’ into a ‘place’ for contemplation, this project offers the citizen of Dhaka City the much needed existential experience.

Keywords: Landscape, Place, Non-Place, Existential Experience
Transforming a ‘Non-Place’
through Architecture as Landscape

Spirit of the ‘Place’ > Spirit of the ‘People’ > Spirit of the ‘Time’
Slow Waste: Wood Pallets in the Expanded Field

LEONARD D. YUI
Roger Williams University

“Materials are reintroduced after use into the process of assimilation, filtration, storage, and production to continue their roles in nature’s cycles.” —John T. Lyle

This project expands pallet use by slowing its waste process to serve non-human entities and functions. The work draws inspiration from the discipline of forest science to allow wood to perform more diverse ecological functions, such as water storage, soil retention, sheltering and perching to name a few. Other wood materials include wood floors from a recently renovated mill (estimated at 150 yrs old), large paper tubes, scrap wood and paper. The wildflowers serve both human and non-human entities, but with a particular aim to challenge and share with the public a more ecological configuration between familiar urban wood elements and more nuanced ecological processes.

Pallets are part of a fast-paced urban society, and its production, use and waste aims to sustain reductive tasks to benefit the human condition. Yet, as this project considers, the systems of resource and waste are fundamentally tied to the ecological world that profit from slower temporal transitions and processes. Movements toward “slow food” and “slowing stormwater” are part of a growing agenda to restore a dialog between people and ecology, but still remains largely undervalued. This design project considers how waste too could take advantage of these perspectives by extending decay for the benefit of an ecological habitat as well as human delight.

Waste materials like pallets are often expedited from place to place and more significantly from form to form. It is estimated that 4 billion pallets are in circulation every day in the U.S. and there is increasing effort to recycle or to repurpose these materials. However, the process and method are limited, with 75% of the repurposed materials either being turned into mulch or fuel. Statistics like these show how pallets are simplified and hastened in its return to the environment.

The etymological root of “waste” embodies the concept of “abandonment” or “to leave,” which implies a boundary between the human loci and where waste ends up. Even when we try to circumvent this in-between world by reusing or repurposing materials to more ecological systems, they are often narrowly interpreted as carbon storage, energy, and/or nutrients. Privileging certain ecological processes that suit large-scale industrial processes are reducing whole materials into their parts prematurely. In opposition, this project demonstrates a more direct ecologically driven response by including more diverse, open-ended reuse of pallet materials by all species - it celebrates maturation.

ENDNOTES

The Ethical Imperative

PALLETS IN THE EXPANDED FIELD

PALLETS LUBRICATE URBAN INDUSTRY AND COMMERCE. GROCERIES, BUILDING MATERIALS, AND MERCHANDISE OF ALL SORTS ARE SHIPPED AND TRANSPORTED ON THIS ESSENTIAL, BUT LARGELY INVISIBLE TOOL. BOTH ITS END OF LIFE AND ITS DIVERSION FROM WASTE TO RESOURCES HAVE LONG BEEN SHAPED AND EXPEDITED FOR INDUSTRY AND THERE LIES A QUESTION OF WHETHER MORE COULD BE DONE IF MATERIAL FUNCTIONS EXISTED BEYOND THE TYPICAL SUSTAINABLE ISSUES OF CARBON STORAGE, ENERGY PRODUCTION, AND NUTRIENT BIOLGICAL CYCLING THAT IS DETERMINED BY THE ECOLOGICAL AVOID.

THE PROJECT EXPANDS PALLET USE BY SLOWING ITS WASTE PROCESS TO SERVE NON-HUMAN ENTITIES AND FUNCTIONS. THE WORK DRAWS INSPIRATION FROM THE DISCIPLINE OF FOREST SCIENCE TO ALLOW WOOD TO PERFORM MORE DIVERSE ECOLOGICAL FUNCTIONS, SUCH AS WATER STORAGE, SOIL RETENTION, SHELTERING, AND PERCHING TO NAME A FEW. OTHER WOOD MATERIALS INCLUDE WOOD FLOORS FROM AN ESTIMATED 150 YR OLD MILL, LARGE PAPER TUBES, SCRAP WOOD AND PAPER, THE WILDFLOWERS SERVES BOTH HUMAN AND NON-HUMAN ENTITIES, BUT WITH A PARTICULAR AIM TO CHALLENGE AND SHARE WITH THE PUBLIC A MORE ECOCLOGICAL CONFIGURATION BETWEEN FAMILIAR URBAN ELEMENTS AND MORE NUANCED ECOLOGICAL PROCESSES.
Military landscapes are often seen as ecologically desolate territories with harsh and barren conditions. Yet, there is growing evidence that these volatile lands are finding a second life as animal refuges, born out of necessity under the growing effects of the Anthropocene and sixth wave of mass extinction. It is the very nature of the military landscape - weaponized, contaminated, protected - that deters regular human activity and allows this new, damaged Nature to appear. These new cyborg landscapes, where technology meets ecology, tell a story of a post-human future where new ecological relationships are formed between the military pollutants and the animals that inhabit the land. NO MAN’S LAND presents an analysis at 2 scales: the global and the local. At the global scale, an atlas provides a catalogue of sites and site conditions to offer evidence of this phenomenon. Focus then turns to the United States in recognition of their $598.5 billion military-industrial complex and their landscapes that places them at the forefront of the local investigation. At this scale, 3 case studies are presented to further illustrate these new complex relationships more intimately: Johnston Atoll, unincorporated territory (closed/abandoned); Rocky Mountain Arsenal National Wildlife Refuge, Denver (closed/reused); and Guantanamo Bay Naval Station, Cuba (active conflict). Investigative mapping and speculation puts into sharper focus the tension between human, animal, and technology. The thesis argues to re-introduce these territories back into the American vernacular as the "involuntary park" - a kind of post-humanist National Park™. Through a set of design guidelines, an overall approach to re-engage these landscapes is recommended that focuses on public engagement under the guise of “voluntourism.” By leveraging human actions, a series of interventions can be implemented that further facilitate animal occupation. The thesis aims to interrogate the conflicting nature of these landscapes and question their future in an increasingly anthropocentric world.
Rhizolith Island: Floating Concrete Breakwater for Mangrove Restoration

JULIE LARSEN
Syracuse University

ROGER HUBELI
Syracuse University

The project was developed in collaboration between Syracuse University Assistant Professors Roger Hubeli and Julie Larsen, and CEMEX GLOBAL R&D. Rhizolith Island is a floating, resilient coastal infrastructure that revitalizes depleting mangrove forests along vulnerable shorelines with ongoing flooding. The modular form of the elements uses advanced concrete technology to strengthen ecological performance of the island as a breakwater and reinforces appreciation of ecologies that surround and protect communities. The project is a collaboration between architects, material scientists, coastal engineers, the local government, and NGOs. Rhizolith Island aims to create a protective barrier for new mangroves to grow and thrive in deep water shorelines. As a breakwater, a collection of islands would attenuate waves through the aggregation of dozens of two-meter concrete elements. Rhizolith Island is designed for failure. The concrete elements are designed to intentionally fail and break apart over time to revert the site back to a more ‘natural’ state where mangroves become the prominent flood protection once again.

DESIGNING FOR FAILURE
The concrete elements last long enough to protect new mangroves as they grow but are designed to intentionally fail once the mangroves reach maturity. The island is comprised of high strength and lightweight concrete. This ensures that the elements are strong enough to be a breakwater while simultaneously working as a flotation device to keep mangrove seedlings above water until the mangrove roots moor themselves securely into the seabed. The elements are constructed of two pieces; a head and a fin. The fin is comprised of high strength; while the head is made to be light, porous, and buoyant. Together, these elements work to create a strong, buoyant structure that creates stability for mangroves to survive harsh water conditions. To ensure longevity of the mangroves, the inevitable failure of the concrete is designed to break apart naturally once mangrove roots become robust and naturally moor into the newly formed sediment below the modules. As the concrete breaks apart over time, it is trapped in the roots of the mangrove with the natural leaf litter accumulating around the fin.

MORE THAN JUST INFRASTRUCTURE
A key component to making the project viable for the City of Cartagena was to not only engineer a solution but design the forms to ensure high quality public space that people can engage with along the shoreline, above and below the water. While the faceted surfaces derive from the fabrication process, the faceted voids are introduced to encourage fish to swim and create new ecosystems below water. The holes also act as ‘rakes’ to catch debris and leaf litter that helps to build up sediment for the mangrove roots to moor into.

AGGREGATION INTO ISLAND AND BREAKWATER SYSTEMS
The individual elements can be singular or aggregated into clusters of two to twenty elements. They are connected together with a rope system while the heads are protected with rubber rings around the perimeter to avoid pre-mature cracking. When aggregated into clusters, the floating islands work together as a buoyant field that acts as a soft but very strong breakwater. The islands can reconfigure into varying patterns, depending on the environmental forces, site constraints, and needs of the users.
The Ethical Imperative

RHIZOLITH ISLAND
FLOATING CONCRETE BREAKWATER FOR MANGROVE REFORESTATION

The project was developed in collaboration between Syracuse University Assistant Professors Roger Hubeli and Julie Larsen, and CEMEX GLOBAL R&D. Rhizolith Island is a floating, resilient coastal infrastructure that revitalizes depleting mangrove forests along vulnerable shorelines with ongoing flooding. The modular form of the elements uses advanced concrete technology to strengthen ecological performance of the island as a breakwater and reinforces appreciation of ecologies that surround and protect communities. The project is a collaboration between architects, engineers, scientists, artists, and local government and NGOs. Rhizolith Island is designed to fail. The concrete elements are designed to intentionally break apart over time to revert the site back to a more 'natural' state where mangroves become the prominent flood protection once again.

DESIGNING FOR FAILURE
The concrete elements last long enough to protect new mangroves as they grow but are designed to fail over time for the mangroves' survival. The failure is engineered at the right strength to encourage this natural behavior. The failure of the concrete elements is an important factor in the design of Rhizolith Island. The floating concrete elements are designed to break apart over time to allow for the growth of new mangroves. As the concrete breaks apart, it is trapped in the roots of the new mangroves, ensuring their stability and growth.

MORE THAN JUST INFRASTRUCTURE
A key component to making Rhizolith Island viable for the City of Cartagena was to not only engineer a solution but design the forms to ensure high quality public spaces that people can engage with along the shoreline, above and below the water. The faceted surfaces derive from the fabrication process, while the faceted voids are introduced to encourage fish to swim and create new ecosystems below water. The holes also act as 'rakes' to catch debris and leaf litter that help to build up sediment for the mangrove roots to securely anchor themselves.

AGGREGATION INTO ISLAND AND BREAKWATER SYSTEMS
The individual elements can be singular or aggregated into clusters of two to twenty elements. They are connected together with a rope system and protected with rubber rings around the perimeter to avoid pre-mature cracking. When aggregated into clusters, the floating islands work together as a buoyant field that acts as a 'soft' but very strong breakwater. The islands can reconfigure into varying patterns, depending on the environmental forces, site constraints, and needs of the users.
'Reorienting the Rural' is a research project that uses the climatic and economic disruptions sweeping the Great Plains as both site and pretext to re-examine how architecture conceives of order, form, and the agency of more-than-human subjects. The project appropriates and redeploy the spatial, territorial, and microclimatic logics of the original Great Plains Shelterbelt of the 1930s—reinvigorating it just as its current form reaches the limits of its ability to mediate soil moisture by lifting the wind off their fields. It centers on a speculative narrative of farmers “tightening their belts”—their Shelterbelts, that is—in response to the looming threat of a second Dust Bowl. Aggregating along an emerging Aridity Line beyond which crops lack the soil moisture to consistently grow, the new belts thicken the line into a newly-sheltered territory—while at the same time thickening the idea of what the Shelterbelt can be and do.

First, while the original Shelterbelt was aligned to the abstract order of the Jefferson Grid, the new belt is instead cued directly to the bioclimatic operations that it performs—tightening the Belts to better harness the wind shadow of the trees, buildings, devices, and objects that make it up. No longer confined to the edges of the grid, the belts realign to negotiate prevailing wind direction, slope, height of objects, and desired length of shadow—allowing for much more pronounced microclimatic mediation.

Second, where the original Shelterbelt was more or less entirely trees, the new belts host a variety of different uses within their open-ended spatial, legal, and microclimatic platform. These are grafted into the current monofunctional monoculture of the region—helping the farmers hedge their economic bets while also hedging their fields. Much like the wind-turbine land-leasing model that precedes them, the belts operate as a source of alternative income and sustenance—a new way to engage economies and ecologies often written out of the landscape of the Plains.

Third, where the original Shelterbelt was a singular intervention, the new belts take form as a self-sustaining process of planting, harvesting, and reorientation. Replanting is cued to measurement and realignment, allowing the belts to tighten and adjust in an ongoing way—a reflexive form of order.

In stepping into an expanded field—in the case of the Great Plains, not only figuratively but also quite literally—architecture confronts both an opportunity and the necessity to reconsider its notions of agency and subjectivity. Could architecture come to be seen less as an authorial act of will and more as a co-production between a host of forces—human and non-human, animate and inanimate alike? How might such an expanded perspective bring us closer to the everyday practices of a broader, often under-addressed set of subjects—in turn, opening new potentials and better addressing their needs? Ultimately, how might such an expanded understanding of agency in architecture allow us to operate within a broader ethical field—re-conceiving and re-deploying the tools of architecture to engage a wider array of subjects?
The Great Plains Shelterbelt in an Expanded Subjective Field

An Ecology of Speculations

The Great Plains Shelterbelt has been an expansive network of interwoven subjectivities, which can be mapped to the one and evolving one from the Jefferson Grid to an evolving bioclimatic grid.
Constellations of the In-between: Architectural Speculations in Contested Urban Interstices

LORINC VASS
University of British Columbia

The city, far from being a physical object with a coherent view, is a complex assemblage of material and immaterial events and unfolding in space and time. Against this complexity and formlessness, the capacity of architecture is commonly located in the imposition of limits. Yet amidst an increasingly trans-disciplinary field, and in an environment of uncertainty and change, the nature of architectural intervention and its sources of agency increasingly come into question. In this questioning of spatial design practice today, the concerns of aesthetics, politics and ethics are inseparable. This is unmistakably manifest in urban conditions of interstitiality: the many overlooked, and often contested, in-between territories at large across the city. ‘Constellations of the In-between’ explores such marginal spaces, with an interest in the latent forms of agency found in the complex spatio-temporal topologies of material elements, social frameworks, and cultural practices.

The project comprises four architectural speculations in territories selected from across Metropolitan Vancouver: each a unique interstitial constellation, but together commonly characterized by ambiguous and contested relations between spatial jurisdiction and temporal occupation. Drawing on spatial indeterminacy and temporal flux as repositories of agency, a series of propositions respond to possible trajectories facing each site. (1) In ‘Displaced Reserve: Acoustic Crossing,’ a constellation of communication devices are deployed at the Kitsilano Indian Reserve no. 6, a historically contested aboriginal village site in Vancouver. By collecting, focusing and transmitting sound, the acoustic mirrors engender provisional connections across the multiple jurisdictions currently occupying the territory. (2) In ‘Assemblage Agriculture: Interfaith Silo,’ a series of shared parking towers are constructed in Richmond’s ‘Highway to Heaven,’ located on the edge of protected agricultural land specially zoned for religious buildings. Responding to the uneasy coexistence of assembly and agriculture, the new infrastructure allows both activities to expand beyond their conventional zoning boundaries. (3) In ‘Mutable Habitat: Commuter Cover,’ a series of canopies are installed in Burnaby’s famous winter roosting site of northwestern crows. Deployed above street-front parking, the tensile constructions provide a series of civic amenities for both humans and crows, working around their respective daily and seasonal cycles of occupation. (4) In ‘Succession Infrastructure: Collective Clearing,’ publicness and privacy become intertwined on the right-of-way of a natural gas pipeline in Surrey. Populated by a series of devices that facilitate spatial demarcation and communal gathering, the linear greenway becomes a mediating framework between personal and shared jurisdiction.

Positioned between realism and provocation, each speculation builds on the existing topological relationship found within its particular interstitial context, drawing forth its latent potential for new, productive spatial and temporal configurations. As such, each intervention encompasses both a localized catalyst and its system-wide effects on the landscape. Beyond transforming the territories onto which they are projected, these effects also become sources of agency for the very process of drawing. In this undertaking, ‘constellation’ constitutes both the subject and the method. It offers multiple, seemingly unconnected viewpoints, and allows for an open-ended yet constructive mapping of relations. It involves both looking at multiple points, and looking from those points. By offering alternative vantage points on the city, and proposing spatial arrangements conductive to communication, cohabitation, succession and negotiation, ‘Constellations of the In-between’ operates across the realms aesthetics, politics, and ethics.
Constellations of the In-between
Architectural Speculations in Contested Urban Interstices

In Displaced Reserve: Acoustic Crossing, a constellation of communication devices are deployed at the Kitsilano Indian Reserve no. 6, a historically contested aboriginal village site in Vancouver. By collecting, focusing and transmitting sound, the acoustic mirrors engender provisional connections across the multiple jurisdictions currently occupying the territory.

In Assemblage Agriculture: Interfaith Silo, a series of shared parking towers is constructed in Richmond’s ‘Highway to Heaven,’ located on the edge of protected agricultural land specially zoned for religious buildings. Responding to the uneasy coexistence of assembly and agriculture, the new infrastructure allows both activities to expand beyond their conventional zoning boundaries.

In Succession Infrastructure: Collective Clearing, publicness and privacy become intertwined on the right-of-way of a natural gas pipeline in Surrey. Populated by a series of devices that facilitate spatial demarcation and communal gathering, the linear greenway becomes a mediating framework between personal and shared jurisdiction.

In Mutable Habitat: Commuter Cover, a series of canopies are installed in Burnaby’s (in)famous winter roosting site of northwestern crows. Deployed above street-front parking, the tensile constructions provide a series of civic amenities including benches and trees, working around the respective daily and seasonal cycles of occupation.
Periphractic Space: Mapping Racial Construction in North American Urban Landscapes

JAMES C. FORREN
Dalhousie University

In Razing Africville Jennifer Nelson (2008) describes actions taken by the City of Halifax, Nova Scotia to isolate the community of Africville – African-Nova Scotians forcibly relocated in the late 1960s. The city encircled Africville with land purchases used for an infectious disease hospital and city dump among other noxious services, creating a targeted space of neglect. This common activity in North American cities constructs ideas of race by penning-in communities. It geographically restricts their movement and access to services and isolates them in the civic imagination: a condition identified by Theo Goldberg in Racist Culture (1993) as periphractic space. Rather than separating populations, however, this circumference of isolation actually facilitates activities of transgression, defilement, and return by dominant groups: a pattern of asymmetric exchange. As communities and their borders evolve over time the response of insurgent groups for greater social and political incorporation challenges and weakens the conscriptions of the periphractic boundary.

Through a method of mapping which incorporates social and technical instruments like timelines, oral histories, city reports, archived surveys, and GPS data this paper traces the penning-in of African-Nova Scotian owned properties and the ensuing tug of war for land ownership between the dominant and insurgent populations of Halifax. This process synthesizes fragmented sources, visualizing the progression of this particular urban geography and enabling us to empirically test Goldberg’s thesis of periphractic exclusion and uncover patterns of activity which resist it. The outcomes of the research support the design of an interpretive landscape program, the Africville Walk, undertaken in partnership with the Africville Museum.
Periphactic Space: Mapping Racial Construction in North American Urban Landscapes

In facing Africville Jennifer Nelson (2006) describes actions taken by the City of Halifax, Nova Scotia to isolate the community of Africville – African Nova Scotian-owned properties and the ensuing tug of war for and ownership between the dominant and insurgent populations of Halifax. This process synthesizes fragmented sources, visualizing the progression of this particular urban geography and enabling us to empirically test Goldberg’s thesis of periphactic exclusion and uncover patterns of activity which sustain it. The outcomes of the research support the design of an interpretive landscape program; the Africville Walk, undertaken in partnership with the Africville Museum.

Through a method of mapping which incorporates social and technical instruments like timelines, oral histories, city reports, archival surveys, and GIS data this paper traces the penning in of African Nova Scotian-owned properties and the ensuing tug of war for and ownership between the dominant and insurgent populations of Halifax. This process synthesizes fragmented sources, visualizing the progression of this particular urban geography and enabling us to empirically test Goldberg’s thesis of periphactic exclusion and uncover patterns of activity which sustain it. The outcomes of the research support the design of an interpretive landscape program; the Africville Walk, undertaken in partnership with the Africville Museum.

Skinner’s Well

Skinner’s Well has a grave act of environmental racism and the recuperative resistance to this act by a resilient community. Contaminating the ground water with raw effluent from collective disease hospital, the City of Halifax refused municipal water service to the community, even at the behest of $1,000,000 dollars difference in water supply.

Periphactic Timeline

Periphactic Timeline conducts an empirical study of land ownership patterns in and around Africville to illustrate the geographic operation of periphactic exclusion in North American cities. The patterns demonstrated in table 1 show the community’s isolation (through forced displacement and the construction of new infrastructures) and the transformation of the community’s landscape into a refuge for urban and industrial expansion.

Carvery Map

Heddie Carvery has been a crucial identifier for the Africville community, and people still introduce themselves by their family connections. Josey Mipapam’s history in Africville is a central theme whose members include the last intact elder resident. As Carvery, a Skinner descendant, housing is granted for the love of her four sons, she is the center of the Africville community and his brother. This map is a prototype for other significant buildings such as the school and the church, showing the displacement of these sites through space and time in the landscape through “periphactic” map problems as the people identify through conversations with their community. Similarly, this map operates as a growing evidence of community engagement.
Another Stack

Another Stack is an experimental environment composed of flexible platforms for hosting events, lectures, workshops and everyday gathering in a large commons space. The environment design also includes plants, a large circular drum for image projection and integrated lighting on the platforms. The environment is re-arranged on an almost daily basis by users sitting, working, talking, eating, meeting and even sleeping in the space.

The individual platform elements seat 6-8 people and can be easily stacked and aggregated into larger arrangements to increase capacity. Measuring nearly 8’ wide, the circular and square-shaped platforms are too large to be understood as typical furniture, inviting users to improvise novel postures, uses and formal compositions. Although simple in form and playful in shape, the platforms are calibrated in height and proportion and cantilevered on all sides to accommodate use as seating, work surface and tables. The voids cut in each platform lighten the individual units and suggest gathering around “primitive” communal forms. The environment is further enhanced through the integration of large graphic patterns, which suggest relationships between the terraced elements and offer a landscape of occupiable graphics to visitors.

As a rapidly prototyped, inexpensive furnishing solution, the platforms are fabricated from SIPs panels, resulting in a solid, yet relatively lightweight system of solid construction that could be rapidly produced offsite. The platforms were transported on site for painting, varnishing and sealing. The resulting foam-core platforms are extremely strong and stable, yet can be easily re-arranged by small groups of 3 to 4 users. The surfaces are finished to expose the OSB texture as a finish, celebrating a modest but ubiquitous material typically relegated to interior wall construction in high-performance residential construction.

ERIK HERRMANN
University of Michigan

ASHLEY BIGHAM
University of Michigan
Another Stack is an experimental environment composed of flexible platforms for hosting events, lectures, workshops and everyday gatherings in a large commons space. The environment design also includes plants, a large circular drum for image projection and integrated lighting on the platforms. The environment is re-arranged on an almost daily basis by users.

The individual platform elements seat 6-8 people and can be easily stacked and aggregated into larger arrangements. Measuring nearly 8’ wide, the circular and square-shaped platforms are too large to be understood as typical furniture, inviting users to re-imagine novel postures, uses and formal compositions. Although simple in form and playful in shape, the platforms are calibrated in height and proportion to accommodate use as seating, work surface and tables. The void cut in each platform tightens the individual units and suggests gathering around a ‘primordial’ communal form. The environment is further enhanced through the integration of patterns, which suggest relationships between the interior elements and offer a legibility of recognizable graphic elements.

As a rapidly prototyped, inexpensive furnishing solution, the platforms are fabricated from SIPs panels, resulting in a solid, yet relatively lightweight system of platforms that can be easily re-arranged by small groups of 3 to 4 users. The surfaces are finished to expose the OSB texture as a finish, celebrating a modest but ubiquitous material typically relegated to interior wall construction in high-performance residential construction.
The ever-shifting surface of the earth creates a plethora of effects on territories, climate, and territorial ecosystems. Of these effects, no hemispheric region appears as catastrophically consistent in terms of natural disasters, than that of the Asia-Pacific.

Geographically speaking, the country of Indonesia happens to receive the blunt of Earth’s natural forces, given that it resides in the belt of shifting tectonic plates known as the Ring of Fire, whose proximal circumstances make it highly susceptible to seismic and volcanic activity.

To fully understand the risk of these circumstances, and their scope in terms of the ecologies they affect, analysis was enacted through critical cartography.

Part of this effort involved instructing local people on how to map their region using Open Source Data, as a means of progressive local agency. This locally-revised data served as a mechanism to understand how people react to natural disasters; how they travel, urbanize, operate, and evacuate.

The area of study consisted of Mount Sinabung, a recently active stratovolcano, and its neighboring territories in North Sumatra, Indonesia. Through exploration and analysis based on the volcano’s risk and effects, we sought to resolve the most ailing issue this region is succumb to. Ash.

Airborne ash proved to be the largest concern in regards to the volcano, causing respiratory damages, infections, and death to the people living there. Volcanic ash has proven beneficial for the surrounding agriculture, in the soil, and can also be utilized as a binding agent in concrete production.

This project investigated an intervention in the landscape as a pre-emptive measure, an unconventional structure integrated as an ephemeral buffer for pyroclastic flow. The collecting ability of the structure allows for maximum extraction of a latent resource. This project speculates the mediums of resource sequestration and protection from a natural catastrophic threat as a possible infrastructural industry.
ARCHITECTURE IN AN EXPANDED FIELD, FROM INTERIORS TO LANDSCAPES
UNCONVENTIONAL STRUCTURES: TOROIDAL PLUME.
Iterative Garden

JULIA JAMROZIK
University at Buffalo, SUNY

‘Line garden’ is a playful exploration of the possibility of using simple materials to achieve a changing temporary space. The garden questions aspects of historical garden design and explores the potential of re-imagining and de-contextualizing contemporary mass-produced materials. The iterative nature of the project has allowed for reactive changes and explorations to be undertaken, testing material effects, spatial configurations, color combinations, and the relationships between the installation and its visitors.

The installation’s main material, barricade tape, is typically used to delineate a perimeter and keep people out of a particular area. Here however it is deployed precisely to bring visitors into the space and entice them to inhabit it. The utilitarian material was applied in combination with simple wooden sub-structures, that were re-used and adapted over the years. The spaces created encourage interaction without being prescriptive about use. While adults enjoy the comfort of the loungers and take pleasure in the moment of repose that the installation provides, youngsters use the web of tape as a maze to crawl through, frolic in and explore. As the movement of the lines of barrier tape varies greatly with the changing of the weather, a multi-sensory experience is created, from a quiet, gentle stir to the sound of a vigorous rustle accompanied by dynamic movement.

The project was a winner of an open international competition in 2014. The competition entry and the first iteration of the garden focused on an exploration of a permeable, horizontal and maze-like field created by parallel lines of barrier tape. Due in part to its popularity with the visitors, the designers were invited back the following years to re-install and adapt the garden.

In 2015 the colors of the field were altered and, reacting to a lack of shade, three new canopy elements added. As they each hang to a different datum, the canopies also gave a different experience of the barricade tape.

In the 2016 version black and white barrier tape was used inspired by razzle dazzle, a form of warship camouflage from WWI. The contrasting colors enhance the appearance of movement of the tape.

The 2017 version of the garden is entirely vertical and was the most spatial and the most engulfing of the installations. A net stretched over a rectangular frame was used to suspend the various lengths of barrier tape creating a cavernous void on the interior of the cuboid. The colors were a mix of those used in previous iterations, literally re-using the scrap material from previous years.

The opportunity to re-install the project, has allowed for an exploration of the space of the garden from a hovering horizontal field to a mixture of horizontal and vertical elements and finally to a fully vertical and enclosing volume. Consistently working with barrier tape, the changing configurations have lead to an awareness of the properties of the material and the ways that it can be deployed to heighten a multi-sensorial experience for the visitors. The four iterations have also been a way of testing color-combinations and their interaction with light, layering and spatial pattern-making. Speaking not only to these parameters as aspects of the historical art of garden design but also to the potential of re-imagining and de-contextualizing contemporary mass produced materials, the iterative project explores effects that can be accomplished with simple means.
ITERATIVE GARDEN

"Line garden" is a playful exploration of the possibility of using simple materials to achieve a changing temporary space. The garden questions aspects of historical garden design and explores the potential of re-imagining and de-contextualizing contemporary mass-produced materials. The iterative nature of the project has allowed for reactive changes and explorations to be undertaken, testing material effects, spatial configurations, color combinations, and the relationships between the installation and its visitors.

The installation’s main material, barricade tape, is typically used to delineate a perimeter and keep people out of a particular area. Here however it is deployed precisely to bring visitors into the space and entice them to inhabit it. The utilitarian material was applied in combination with simple wooden substructures, that were re-used and adapted over the years.

The spaces created encourage interaction without being prescriptive about use. While adults enjoy the comfort of the lounger and take pleasure in the moment of repose that the installation provides, youngsters use the web of tape as a maze to crawl through, frolic in and explore. As the movement of the lines of barrier tape varies greatly with the changing of the weather, a multisensory experience is created, from a quiet, gentle stir to the sound of a vigorous rustle accompanied by dynamic movement.

The project was a winner of an open international competition in 2014. The competition entry and the first iteration of the garden focused on an exploration of a permeable, horizontal and maze-like field created by parallel lines of barrier tape. Due in part to its popularity with the visitors, the designers were invited back the following years to reinstall the garden.

In 2015 the colors of the field were altered and, reacting to a lack of shade, three new canopy elements added. As they each hang to a different datum, the canopies also gave a different experience of the barricade tape.

In the 2016 version black and white barrier tape was used inspired by razzle dazzle, a form of warship camouflage from WWII. The contrasting colors enhance the appearance of movement of the tape.

In the 2017 version of the garden, entirely vertical and made of ropes, the most spatial and the most engrossing of the installations. As it stretched over a rectangular frame, it was suspended in a cavernous void on the interior of the cuboid. The colors were a mix of those used in previous iterations, literally reusing the scrap material from previous years.

The opportunity to reinstall the project, has allowed for an exploration of the space of the garden from a hovering horizontal field to a mixture of horizontal and vertical elements and finally to a fully vertical and enclosing volume. Consistently working with barrier tape, the changing configurations have tested an awareness of the properties of the material and the ways that it can be deployed to heighten a multisensory experience for the visitors. The four iterations have also been a way of testing color combinations and their interaction with light, layering and spatial pattern-making. Speaking not only to these parameters as aspects of the historical art of garden design but also to the potential of re-imagining and de-contextualizing contemporary mass-produced materials, the iterative project explores effects that can be accomplished with simple means.

The Line Gardens were installed by Julia Jamrozik and Coryn Kempster as part of the annual International Garden Festival at Jardins de Métis / Reford Gardens in Grand-Métis, Québec.

Photos by Louise Tanguay, Martin Bond and Coryn Kempster
Small Scale Big Impact: Connecting Communities to the Urban Landscape through Neighborhood Parks

WILLIAM JOSEPH DORAN
Louisiana State University

Public spaces like neighborhood parks help communities thrive and often anchor the daily lives of residents – especially kids. Most mid-size American cities house hundreds of these parks in their urban cores, yet their design, programming, and potential to impact underserved communities is often overlooked. Municipal park systems tend to focus on large parks and broad-reaching amenities like zoos and sports facilities, while ignoring the inherent value in neighborhood parks as venues for community engagement and a locus for connecting people. Small parks are an incredibly valuable asset to thriving cities.

The project shown is based in the Mid City area of Baton Rouge, Louisiana – and explores the role of the park in bringing people together around their common geography, history, and culture. The project, called IAMMIDCITY, began with a 3rd-grade curriculum at two local public elementary schools that focused on the history, geography, and culture of the Mid City area. The students made maps, laid out timelines, and took photos to document how they see Mid City. They were also given small wood cutouts that read “#IAMMIDCITY,” as part of a corresponding social media and branding campaign for the area. At the end of the school year, the photos found themselves in the heart of a local park situated between the two schools as part of an installation also dubbed IAMMIDCITY.

For the installation, the photos were printed and laminated on composite metal panels and installed in a grid in the basketball court at the park. In the process, the design team met local kids, parents, and neighbors who use the park every day. Some helped with the installation and recognized friends, family, or even themselves in the photos. This revealed just how vital the park was to the neighborhood. The design team began to walk the streets to meet more residents and talk to businesses-owners. Spending a lot of time in the area allowed the team to genuinely get to know the neighborhood and opened up a dialogue about what residents would like to see in the park. The team began relaying those needs to a representative from the local parks system, which inspired them to approach administrators about funding some much-needed park improvements. Little did we know that it would create a lasting collaboration with the parks system and the neighborhood to improve the park.

As a result, the parks system assembled some possible improvement options to discuss with residents such as new play equipment, community planter boxes, benches, and maybe even some mural walls. The project team facilitated meetings with the parks system and residents to design some hands-on opportunities for participation in the improvements. To create a truly community-designed park, it’s critical to build sincere relationships and empower residents to shape their communities as they grow and change. Construction began this fall and is expected to be complete early next year.
The Ethical Imperative

EXIST.

EXIST.

EXIST.

PAINTED PLANTERS W/ POTTERY PLANTS

REPAINT COURT SURFACE & ADD "#IAMMIDCITY"

(32) 2'-0" X 2'-0" COMPOSITE PANELS MOUNTED IMAGES HUNG FROM CHAIN LINK

LOT 12

LOT 6

BLOCK 18

LOT 11

#IAMMIDCITY

#IAMMIDCITY

OPEN SPACE

R.O.W. 50'-0"

NEIGHBORS COURT SURFACE & BAND WALL "#IAMMIDCITY"

EXIST. MAN HOLE COVER

EXIST. CHAIN LINK FENCE

EXIST. BBALL COURT

REPAINT COURT SURFACE LT. GRAY & PAINT "#IAMMIDCITY"

(7) 16" X 48" WOODEN PLANTERS STAKED INTO GROUND

SITE PLAN NTS

NORTH 1

1

For the installation, the photos were printed and laminated on composite metal panels and installed in a grid in the basketball court at the park. In the process, the design team met local kids, parents, and neighbors who use the park every day. Some helped with the installation and recognized friends, family, or even themselves in the photos. This revealed just how vital the park was to the neighborhood.

The design team began to walk the streets to meet more residents and talk to businesses - spending a lot of time in the area allowed the team to genuinely get to know the neighborhood and opened up a dialogue about what residents would like to see in the park. The team began relaying those needs to a representative from the local parks system, which inspired them to approach administrators about funding some much-needed park improvements. Little did we know that it would create a lasting collaboration with the parks system and the neighborhood to improve the park.

Public spaces like neighborhood parks help communities thrive and often anchor the daily lives of residents – especially kids. Most mid-size American cities house hundreds of these parks in their urban cores, yet their design, programming, and potential to impact underserved communities is often overlooked. Municipal park systems tend to focus on large parks and broad-reaching amenities like zoos and sports facilities, while ignoring the inherent value in neighborhood parks as venues for community engagement and a locus for connecting people. Small parks can be incredibly valuable assets to strong communities.

The project shown is based in the Mid City area of Baton Rouge, Louisiana, and explores the role of the park in bringing people together around their common geography, history, and culture. The project, called IAMMIDCITY, began with a 3rd-grade curriculum at two local public elementary schools that focused on the history, geography, and culture of their Mid City area. The students made maps, laid out timelines, and took photos to document their understanding of Mid City. They were given small wood cutouts that read "#IAMMIDCITY," as part of a corresponding social media and branding campaign for the area. At the end of the school year, the photos (pictured at left) found themselves in the heart of a local park situated between the two schools as part of an installation also called IAMMIDCITY.

As a result, the parks system assembled some possible improvement options to discuss with residents such as new play equipment, community planter boxes, benches, and maybe even some mural walls. The project team facilitated meetings with the parks system and residents to design some hands-on opportunities for participation in the improvements. By creating a truly community-designed park, it is critical to build stronger relationships and empower residents to shape their communities as they grow and change. Construction began this fall and is expected to be complete early next year.
BUILDING
BEHAVIORS
Emboss Tower

JIN YOUNG SONG
University At Buffalo, SUNY

Emboss tower explores the function of a structural skin with an embossed surface applicable to use for tall building structures. The major diagrid system with a secondary embossed surface structure provides an enhanced perimeter structural system by increasing tube section areas and reduces wind loads by disorienting major organizing wind forces.

A parametric study used to investigate an optimized configuration of the embossed structure revealed that the embossed structure has a structural advantage in stiffening the structure, reducing lateral drift to 90% compared to a non-embossed diagrid baseline model, and results of wind load analysis using computational fluid dynamic software, demonstrated the proposed embossed system reduced lateral surface loads.

The resulting undulating embossed skin geometry presents both opportunities for incorporating versatile interior environments as well as unique challenges for daylighting and thermal control of the envelope. Solar and thermal control requires multiple daylighting solutions to address each local façade surface condition in order to reduce energy loads and meet occupant comfort standards.

These findings illustrate that although more complex in geometry, architects and engineers can produce tall buildings that have less impact on our environment by utilizing structural forms that reduce structural steel needed for stiffening, thus reducing embodied CO2, while positively affecting indoor quality and energy performance, all possible while creating a unique urban iconography derived from the performance of building skin.
The Ethical Imperative

1.32E-03 80% 71%

PRINCIPLE OF DEFLECTION OF BEAMS
INCREASED EFFICIENCY OF STACKED EMBOSSED MODULE

BASELINE EMBOS

59 0.088356 0.080464 91% 83% 1.79E-03 1.62E-03 97% 88%

22 0.02247 0.020756 23% 21% 1.58E-03 1.44E-03 86% 78%

40 0.053665 0.049087 55% 50% 1.84E-03 1.65E-03 99% 89%

11 0.007472 0.007035 8% 7% 1.01E-03 9.39E-04 55% 51%

13 0.009792 0.00917 10% 9% 1.19E-03 1.13E-03 64% 61%

42 0.057329 0.052418 59% 54% 1.83E-03 1.66E-03 99% 90%

30 0.035721 0.032817 37% 34% 1.75E-03 1.59E-03 95% 86%

16 0.013758 0.012748 14% 13% 1.38E-03 1.22E-03 75% 66%

49 0.070206 0.064071 72% 66% 1.84E-03 1.67E-03 100% 90%

34 0.042783 0.039229 44% 40% 1.78E-03 1.62E-03 96% 87%

36 0.046351 0.042457 48% 44% 1.79E-03 1.62E-03 97% 87%

58 0.086562 0.078846 89%

9 0.005454 0.005154 6% 5% 8.85E-04 8.69E-04 48% 47%

14 0.011087 0.01035 11% 11% 1.30E-03 1.18E-03 70% 64%

29 0.033969 0.031228 35% 32% 1.72E-03 1.58E-03 93% 86%

46 0.064685 0.059079 67% 61% 1.85E-03 1.67E-03 100% 90%

48 0.068366 0.062402 70% 64% 1.84E-03 1.66E-03 99% 90%

18 0.016492 0.015295 17% 16% 1.40E-03 1.29E-03 76% 70%

19 0.017892 0.016581 18% 17% 1.40E-03 1.29E-03 76% 70%

35 0.044557 0.040842 46% 42% 1.77E-03 1.61E-03 96% 87%

54 0.079334 0.072321 82% 74% 1.82E-03 1.64E-03 98% 89%

55 0.081149 0.073961 83% 76% 1.82E-03 1.64E-03 98% 89%

8 0.004569 0.004285 5% 4% 9.66E-04 8.40E-04 52% 45%

EMBOSS TOWER

The Emboss tower exploits the function of structural skins, by shaping the surface of embossing to influence the diffusion of wind pressures and to majorly rearrange wind reducing significant surface wind pressures to reduce steel tonnage for the structure. The self-shading effect allows for interior shading systems to be specified for each sub-surface inclination and foundation angles, permitting the building to self-shade and self-control. The planning behind the embossed skin also allows versatile office environments and presents a unique urban iconography to the street derived from performance of the building skin.

BUILDING DRIFT IMPROVEMENT BASED ON THE PRINCIPLE OF DEFLECTION OF BEAMS

OPTIMIZED SEQUENCES OF THE EMBOSSED MODULE

SURFACE SHAPES AND STRUCTURAL STEEPNESS

INCREASED EFFICIENCY OF STACKED EMBOSSED MODULE

EMBOSS FOR WIND LOAD REDUCTION

EMBOSS FOR EFFICIENT SOLAR CONTROL

CFD computational analyses show that the embossed skin could significantly reduce the base shear force of the structure. For example, the base shear forces of the embossed skin type under 10° and 15° winds of attack are, respectively, 18.05% and 21.20% less than those of baseline model.
Cross Laminated Timber is emerging as a revolutionary material in the development of midrise urban housing. Transformational thinking about energy and project delivery systems is quickly changing the how we approach energy, health, affordability, and construction.

This project is part of a growing body of work under development in our research group that is connected to fully integrated building delivery models, from land acquisition, through project delivery, occupation and life cycle management.

This prototype is situated on a ¼ typical city block, in this case Seattle or Atlanta. Its structure is fabricated using C.L.T, a low impact, prefabricated, lightweight and very strong material that generates almost no waste onsite. Also, this material has proven to be a great alternative to the traditional materials on which construction has been based for years, like precast.

This work informs our architecture and engineering based design studio pedagogy, and is directly connected to our Institute’s internationally recognized Ph.D and M.S. programs in High Performance Building. These highly structured advanced studios are tailored to different levels of complexity and focus areas, creating new opportunities for the application of building physics and building technology, always with sustained emphasis on design.

When paired with localized or district scaled renewable energy packages, highly advanced urban housing prototypes emerge which address a variety of key questions technical, environmental and social challenges, including:

1. Consistent use of highly renewable, local, and recyclable products, especially in the southeast U.S., where high quality timber is readily available.

2. Collaborative consumption models allow occupants to share key lifestyle needs like kitchens, workspace, internet, maintenance, resulting in a deliberate approach to affordability. The three main building masses are conceived as a free plan that allow multiple configurations according to the user’s needs and can be subdivided into housing ‘shares’ from 400 – 4000 sf.

3. In many sunbelt cities, parking is still part of the housing equation. Here, CLT is used for medium span autonomous vehicle parking, optimizing circulation and space for users helping to reduce energy needs and material costs. In fact, these concepts have resulted into an ambitious combination which tries to foresee and analyze the change on needs and behaviors of buildings based on its users.

4. Energy chase system partners with vertical circulation to create maximum flexibility in the plan for a variety of scaled living and working units. Outline system as follows (see diagrams)

 - Ground source Heat Pump and Energy Pilings
 - Radiant Floor Heating and Cooling
 - Energy Recovery Ventilators to manage condensate
 - On site energy generation PV panels – the energy veil
 - BIPV integrated into shading devices

Sustained efforts in the area of market rate, carbon neutral, energy positive energy consuming market rate urban housing will lead to:

- advances in interdisciplinary educational models
- community engagement and debate around 21st century housing, energy and affordability
- advances in what constitutes the public realm in urban areas with increasing density
- inquiry into innovative materials and construction methods
- advances in dialogues around design and energy delivery
Cross Laminated Timber (CLT) is emerging as a revolutionary material in the development of midrise urban housing. Transformational thinking about energy and project delivery systems is quickly changing the way we approach energy, health, affordability, and construction.

This project is part of a growing body of work under development in our research group that is connected to fully integrated building delivery models that are sustainable, efficient, and adaptable. This project is connected to our institutional mission to produce high-performance buildings that are energy efficient, cost-effective, and environmentally responsible.

This work informed our architecture and engineering based design studio pedagogy, and is directly connected to our Institute’s internationally recognized M.S. and Ph.D. programs in High Performance Building. These highly structured advanced studios are tailored to different levels of complexity and focus areas, creating new opportunities for the application of building physics and building technology, always with sustained emphasis on design.

When paired with localized or district scaled renewable energy packages, highly advanced urban housing prototypes emerge which address a variety of key questions technical, environmental and social challenges, including:

- Consistent use of highly renewable, local, and recyclable products, especially in the southeast U.S., where high quality timber is readily available.
- Collaborative consumption models allow residents to share the building’s resources, including fuel, maintenance, and space, resulting in a sustainable and cost-effective approach to affordability. The three main building systems are constructed as a base plane that allows multiple configurations according to the user’s needs and can be expanded to meet housing demands from 600 – 5000 sf.
- In many coastal cities, parking is still part of the housing equation. Here, CLT is used for medium span autonomous vehicle parking, optimizing circulation and space for users helping to reduce energy needs and material costs. These concepts have resulted in an ambitious combination which seeks to foresee and analyze the change on needs and behaviors of buildings and urban space in the 21st century.
- Energy efficient systems with vertical circulation to make maximum flexibility in the plan for a variety of mixed-use and residential spaces.
- Thermal Comfort (Heating and Cooling)
- Radiant Floor Heating and Cooling
- Energy Recovery Ventilators to manage condensate
- On site energy generation PV panels – the energy veil
- BIPV integrated into shading devices

Sustained efforts in the area of market rate, carbon neutral, energy positive market rate urban housing will lead to:

- Advances in interdisciplinary educational models
- Community engagement and debate around 21st century housing, energy and affordability
- Advances in what constitutes the public realm in urban areas with increasing density
- Inquiry into innovative materials and construction methods
- Advances in dialogues around design and energy delivery
Situated at Historical Fourth ward Houston, Texas, Shotgun Chameleon is inspired by the flexibility of Gulf Coast raised shotgun houses floor plan and the versatility of chameleon skin. The design emphasizes programmatic flexibility and response to climate. The chameleon-like front screen element provides a myriad of facade possibilities to adapt this design to different urban contexts and to a variety of solar/wind orientations. Possibilities include wood siding painted to blend with the streetscape, billboards where commercial uses are feasible on the ground floor, louvered wood (vertical or horizontal depending on orientation) to allow for breezes while blocking direct sun and providing privacy, solar panel screen to harvest solar energy, or vine covered screens reminiscent of French quarter balconies. As for the alternating wood slats screen on the sides, they provide privacy for both residents and the neighbors while allowing sunlight and wind to move through the house. The double height glass windows frame an ever evolving urban view at the South whereas the floor to ceiling window frame the four seasons views of nature at the north.

This 1,500 square feet house is designed with cross ventilation in mind. Summer breeze is channeled through the south facing balcony and porch to passively ventilate the house. Angle of roof was carefully calculated to allow lower winter sunlight to enter the interior spaces while higher summer sunlight stays outside. The balcony and porch which extend the spaces whenever needed by opening glass sliding doors without adding additional air conditioned space. The choice of renewable wood material, high efficient mechanical equipment (mini split ac units and tank-less water heater), dual flush toilet, led lighting, foam insulation and low-e insulated windows drastically reduces energy consumption.

Flexibility and adaptability of interior space is key to this design. Closing the internal stair, this 3 bedrooms and 2 baths single family home could become an up and down duplex for rental or accommodate multi-generational family arrangement. Tenant on upper floor could use the external stairs. This same setting could also be used as live-work space with the bottom unit as office spaces. The renting out option helps generate income to offset the cost of mortgage. This encourages a more sustainable way of home ownership. The design of the house also aims to revisit and to celebrate the idea of balcony and porch living which rooted heavily in the vernacular of the neighborhood, Freedmen’s Town. The balcony not only provides a great social space for the residents but also encourages interaction with neighbors on sidewalk or across the street.
The Ethical Imperative

The Ethical Imperative

The alternating wood slats screen on the sides provides privacy for both residents and the neighbors while allowing sunlight and wind to move through the house. A double height glass window frames an ever evolving urban view at the south and a floor to ceiling opening in the second floor bedroom frames the four season views of nature at the north. Flexibility and adaptability of interior space is key to this design (see floor plans). Closing the internal stairs, this 3 bedrooms and 2 baths single family home could become an up and down duplex for rental or accommodate multi-generational family arrangement. Tenant on upper floor could use the external stairs. This same setting could also be used as live-work space with the bottom unit as office spaces, the renting out option helps generate income to offset the cost of mortgage. This encourages a more sustainable way of home ownership. The design of the house also aims to revisit and to celebrate the idea of balcony and porch living which rooted heavily in the vernacular of the neighborhood, Freedmen’s Town. The balcony not only provides a great social space for the residents but also encourages interaction with neighbors on sidewalk across streets. This 1,500 sq ft house is designed with cross ventilation in mind. Summer breeze is channeled through the south facing balcony and porch to passively ventilate the house. Angle of roof was carefully calculated to allow winter sun light to enter the interior spaces while higher summer sunlight stays outside. The balcony and porch which extend the spaces whenever needed by opening glass sliding doors without adding additional AC space. The choice of renewable wood material, high efficient mechanical equipment, dual flush toilet, led lighting, foam insulation and low-e insulated windows drastically reduces utility consumption.

SHOTGUN CHAMELEON
An Adaptive Disaster Replacement Home

Situated at Historical Fourth ward Houston, Texas, Shotgun Chameleon is reimagined by Gulf Coast architects Shotgun houses and versatility of chanvre win. The design emphasizes programmatic flexibility and response to climate. The chameleon—tax front screen element provides a myriad of facade possibilities, adapt the design to different urban contexts and include variety of solar gain orientations possibilities. Include wood siding painted to blend with the street scale, hillside where commercial uses re feasible on the ground floor, preserved wood/vertical or horizontal (depending on orientation) to allow for breather while blocking direct sun and providing privacy. Solar panel screen to harvest solar energy, or vine covered screens reminiscent of French quarter balconies.
The ceiling of Senyai, inspired by the vaulted geometry of ancient Thai architecture, incorporates acoustic and lighting performance into a contemporary spatial experience with soft ambient effects. Visual layering of ceilings fins is suggestive of movement while changing the diffusion of global sound though varied depth of each individual double-curved vaulted zone. The global texture of the surface and color plays with light to create a sense spatial weightlessness and visual expansion, as the eye travels beyond the each articulated edge. At the same time the slats appear as a continuous surface, mimicking an active body of water, or, in homage to the restaurant’s name (“senyai” translates to “big noodles” in Thai), a bowl of hot noodles in broth. The ceiling is formed by a series of 275 unique vertical slats that perpendicularly sectionally change in series in the perpendicular direction—no two slats, or vaults, are alike. Using a non-uniform diagrid as a method for standardizing highly varied component-based construction, we created a localized effect of privacy while diffusing sound through the dynamic character of geometry.

Using three dimensional ellipsoidal vaults, the ceiling geometry supports a sense of individual presence within the small collective space. An ellipsoid is a double curved surface that in its idealized version concentrates the direction of the sound to travel back to the foci point at which the table is located. In Senyai’s ceiling the computational surface of the pure ellipsoid is materialized through series of diagonally cut slotted fins that mitigate sound reflections in the space related to high frequency sounds. The fins increase the area of the elliptical surface to maximize the number of sound reflections, trapping them sectionally within their depth and thus holistically performing as a spatial diffuser. As each bay within the diagrid has a varied size and depth, each bay produces a different frequency of reverberation, making the global diffusion more pleasant, cutting off high frequencies (high noise levels) in the space. The intention was to create a geometry that would both act as a holistic sound diffuser throughout the small room with the potential to direct the localized sound intensity towards the elliptical foci, and cut off the fall-off sound towards the neighboring zones. Hence the depth of the fins varies, thinning towards the top vertex of the ellipsoid and thickening towards its edges. The scalar variation along the collective ellipsoidal geometry produces a series of sound effects dispersed along the larger space. Historically, double curved vaults were used to create echoed reverberation effects with a series of successive reflections on hard smooth surfaces. In this case, we are using geometry to simultaneously reflect and diffuse the sound to effectively soften the acoustic spatial quality. Slotting of the geometry eliminates the echo effects that would be otherwise produced, while still allowing for a concentrated privacy of sound within the loose boundaries of three dimensional bubble. The relationship of the global geometry to variation of the surface subdivision allows for both: easy digital fabrication through the use of CNC technology, as well as tighter coordination of performative effects.
The Ethical Imperative

The ceiling of Senyai, inspired by the vaulted geometry of ancient Thai architecture, incorporates acoustic and lighting performance into a contemporary spatial experience with soft ambient effects. Visual layering of ceilings fins is suggestive of movement while changing the diffusion of global sound through varied depth of each individual double-curved vaulted zone. The global texture of the surface and color plays with light to create a sense of spatial weightlessness and visual expansion, as the eye travels beyond the each articulated edge. At the same time the slats appear as a continuous surface, mimicking an active body of water, or, in homage to the restaurant’s name (“senyai” translates to “big noodles” in Thai), a bowl of hot noodles in broth. The ceiling is formed by a series of 275 unique vertical slats that perpendicularly sectionally change in series in the perpendicular direction—no two slats, or vaults, are alike. Using a non-uniform diagrid as a method for standardizing highly varied component-based construction, we created a localized effect of privacy while diffusing sound through the dynamic character of geometry.

Using three dimensional ellipsoidal vaults, the ceiling geometry supports a sense of individual presence within the small collective space. An ellipsoid is a double curved surface that in its idealized version concentrates the direction of the sound to travel back to the foci point at which the table is located. In Senyai’s ceiling the computational surface of the pure ellipsoid is materialized through series of diagonally cut slotted fins that mitigate sound reflections in the space related to high frequency sounds. The fins increase the area of the elliptical surface to maximize the number of sound reflections, trapping them sectionally within their depth and thus holistically performing as a spatial diffuser. As each bay within the diagrid has a varied size and depth, each bay produces a different frequency of reverberation, making the global diffusion more pleasant, cutting off high frequencies. High noise levels in the space. The intention was to create a geometry that would both act as a holistic sound diffuser throughout the small room with the potential to direct the localized sound intensity towards the elliptical foci, and cut off the fall-off sound towards the neighboring zones. Hence the depth of the fins varies, thinning towards the top vertex of the ellipsoid and thickening towards its edges. The scalar variation along the collective ellipsoidal geometry produces a series of sound effects dispersed along the larger space. Historically, double curved vaults were used to create echoed reverberation effects with a series of successive reflections on hard smooth surfaces. In this case, we are using geometry to reflect and diffuse the sound to effectively soften the acoustic spatial quality. Slotting of the geometry eliminates the echo effects that would be otherwise produced, while still allowing for a controlled privacy of sound within the loose boundaries of three-dimensional bubble. The relationship of the global geometry to variation of the surface subdivision allows for both: easy digital fabrication through the use of CNC technology, as well as tighter coordination of performative effects.
This reading hut was constructed for a family on a small farm. Consisting of four thousand linear feet of two by four, the hut was intended to provide a space for the children play and read. While open to the air, with no sealed enclosure, the space is intended to provide thermal comfort during the summer months. It provides shelter from the sun and a lower mean radiant temperature due to this self-shading and naturally occurring night flushing of the structure. The initial idea came out of a study folding and cutting the edges of a cube to produce aperture. The shift from the paper to wood forced a transition in strategy. With this in mind, the goal of this project is to engage the given construction systems in an oblique manner, in this case stacking wood like masonry to produce aperture. We deployed the 2 x 4 in much the same way one might deploy a brick, stacking each in sequence. Each aperture consists of two shelves and the indentation of the exterior wall. They are articulated to provide a bench, a desk, and several storage spaces. The corner detail is the result of the 2 x 4 boards weaving together. This is expressed on the exterior but hidden on the interior of the hut. By voiding out the boards, the apertures expose a shifting column at each corner.

The walls, stacked untreated pine, absorb moisture and resist heat gains. While the slatted windows prevent direct summer sunlight from penetrating the space they allow air to flow freely through the walls. While warm air can pass through the structure, the mass of the walls produces a cool microclimate within the space by thermal lag. The hut’s slatted apertures additionally provide several views to the tree line and adjacent corn fields.

Systems of material, thermal, social, and economic concerns are present in this design. They have agency outside of the designer and as such push back on the design intent in ways that generate unique outcomes. These systems provide an armature and foundation for this methodology of design.
This reading hut was constructed for a family on a small farm. Consisting of four thousand linear feet of two by four, the hut was intended to provide a space for the children to play and read. While open to the air, with no sealed enclosure, the space is intended to provide thermal comfort during the summer months. It provides shelter from the sun and a lower mean radiant temperature due to this self-shading and naturally occurring night flushing of the structure.

The initial idea came out of a study folding and cutting the edges of a cube to produce aperture. The shift from the paper to wood forced a transition in strategy. With this in mind, the goal of this project is to engage the given construction systems in an oblique manner, in this case stacking wood like masonry to produce aperture. We deployed the 2 x 4s in much the same way one might deploy a brick, stacking each in sequence. Each aperture consists of two shelves and the indentation of the exterior wall. They are articulated to provide a bench, a desk, and several storage spaces. The corner detail is the result of the 2 x 4 boards weaving together. This is expressed on the exterior but hidden on the interior of the hut. By voiding out the boards, the apertures expose a shifting column at each corner.

The walls, stacked untreated pine, absorb moisture and resist heat gains. While the slatted windows prevent direct summer sunlight from penetrating the space, they allow air to flow freely through the walls. While warm air can pass through the structure, the mass of the walls produces a cool microclimate within the space by thermal lag. The hut's slatted apertures additionally provide several views to the tree line and adjacent corn fields.

Systems of material, thermal, social, and economic concerns are present in this design. They have agency outside of the designer and as such push back on the design intent in ways that generate unique outcomes. These systems provide an armature and foundation for this methodology of design.
DESIGN RESEARCH IN THE STUDIO CONTEXT
This pair of first-year, graduate-level studios, taught over two consecutive academic years focused on the study and design of Hong Kong’s thinnest residential building type, pencil towers. The work focused specifically on extraordinarily compact and slender buildings with single residential units on each floor. In the first stage of the course, students studied the economic, architectural and regulatory conditions that make these extreme buildings possible to build in Hong Kong. The studio worked together to conduct a survey of more than sixty slender towers in Hong Kong and document them through photography, drawing and digital modeling. An analysis of the documented towers revealed extreme ratios of vertical circulation core to livable space, unique massing strategies for reducing building volume and exploitation of building regulation loopholes to maximize rentable area. Through the research students learned valuable lessons about the close relationship between building code and building form in an ultra-dense city with extremely high land value. Efforts from the tower and code research were compiled into a studio reference guide for use during the course of the semester.

In response to the restrictive regulatory and economic context of Hong Kong, students used digital software and contemporary computational design techniques to develop innovative tower systems that operate within new code-based limitations. Students considered the form of tall buildings in relationship to their performance in terms of structural, programmatic, material, environmental and social factors. The interior design and relative efficiency of units were very important to the studio as the compact nature of the apartments required students to make use of every cubic foot available. Many projects yielded integrated furniture systems to create projects that experiment with non-standard modes of dwelling.

Given Hong Kong’s proximity to the manufacturing zone of China’s Pearl River Delta students sought to find modes of construction that are site specific in that they relate to regional resources and industrial strengths. Students also looked into construction methods used in other regions in Asia for insights into new possibilities for high-rise construction in Hong Kong. The studio required intensive use of CNC prototyping equipment to consider how these machines relate to other scales and modes of construction today.

In a city were land value is extremely high, communal spaces in residential buildings have been reduced over past decades in the pursuit of commercial profit. The studios asked students to consider how communal spaces are defined and understood within existing tall residential buildings and how can communal space be increased and or improved to perform better in contemporary society. The work provides new ideas for building more socially diverse, better performing housing for densifying urban areas across the world.

Each of the eighteen towers designed takes on a specific set of issues responding to the course brief and developed through the students’ research findings. Overall, the studios sought to creatively use field research to create novel, non-repetitive, mixed-use conditions that reveal new possibilities for the world’s most slender building type.
The Ethical Imperative

The Ethical Imperative

During the year to end-November 2012 house prices had the highest year-on-year increase since June 2011, propelled by very low interest rates and strong foreign demand. Property prices in Hong Kong have surged 73% (56% in apartments. Property prices in Hong Kong have seen the highest price increases. During the year to end-November 2012 house prices had the highest year-on-year increase since June 2011, propelled by very low interest rates and strong foreign demand. Property prices in Hong Kong have surged 73% (56% in apartments. Property prices in Hong Kong have seen the highest price increases. During the year to end-November 2012 house prices had the highest year-on-year increase since June 2011, propelled by very low interest rates and strong foreign demand. Property prices in Hong Kong have surged 73% (56% in apartments. Property prices in Hong Kong have seen the highest price increases. During the year to end-November 2012 house prices had the highest year-on-year increase since June 2011, propelled by very low interest rates and strong foreign demand. Property prices in Hong Kong have surged 73% (56% in apartments.
The Great Lakes are the world’s largest surface freshwater system, containing approximately 21% of the world’s surface freshwater supply. These expansive inland freshwater seas contain 84% of North America’s surface freshwater and support a population of more than 30 million people.

Known as America’s “Third Coast”, The Great Lakes are an environmental treasure with a shoreline that measures over 10,000 miles. This vast freshwater network provides the Midwest with drinking water, food, economic opportunities and recreational activities, making it one of North America’s greatest natural resources.

The Great Lakes Region was once the industrial core of the country, but as we know, the territory has suffered from deindustrialization, leaving these vast lakes lined with “Rust Belt” Cities that are scarred from shifting populations and industries that have migrated elsewhere.

From Waste to Wonder is an on-going design research studio that asks students to consider the architectural, cultural, economic and environmental issues tied to the wasted waterfronts of America’s “Third Coast”. Seen through an optimistic lens, these post-industrial environments present a tremendous set of opportunities.

Landscape Urbanism plays a major role in the way we understand and approach these urban issues. Students conduct intensive research at the start of the semester, producing a series of maps and infographics to better understand and explain the wasted waterfront conditions of The Great Lakes Region. Students work at a variety of scales as they explore ideas related to water remediation, urban vacancy and the reuse of urban infrastructure.

A series of precedents, from global to local are analyzed to understand how other designers have struggled with similar issues. Research and design focuses on hydrology, landscape, ecology, infrastructure and urban form. Students are challenged to synthesize the information they obtain throughout the first half of the semester to develop creative design strategies at the intersection of architecture, landscape and infrastructure. Student design proposals transform wasted waterfronts into productive urban environments that remediate the post-industrial landscape, provide educational opportunities and reinvigorate “Rust Belt” Cities.

NOTE
Re-Inhabiting the Ruin by Graduate Student Rachel Momenee

FROM WASTE TO WONDER Research & Design Studio
Re-Inhabiting the Ruin by Graduate Student Rachel Momenee
Saving the Planet Through Thesis

KAREN LANGE
California Polytechnic State University

Thesis exists in the in-between, the ambiguous space between real and unreal, proto-professional and professional, construction and vision. While thesis studio serves as a think tank for cultural observation, theoretical exploration, material exploitation, and architectural deviation, it is inherently about problem solving; affirmation through creation. Having mastered the architectural art of representation, the thesis student begins to think about things beyond their control and in so doing attempts to change the facts of construction or culture. Sometimes thesis is about saving the world.

This particular thesis studio combines the nature of conceptualizing the big idea with experimental 1:1 scale objects, and individualized thesis projects with a collaborative installation. In this case four diverse projects characterize the ability of thesis to define, analyze, synthesize, and produce a solution to the deterioration of earth’s environment, cultural and infrastructural. Students hone their super powers through manifesto and research, allowing them to rant about what could be in addition to fueling innovation. Research leads to narration and experimentation, while collaboration forms a bond through the studio that allows themes and constructive criticism to flourish.

Architects use their ability of representation to propose the super real or surreal solution to problems, for example Lebbeus Woods’ Quake City or High Houses. According to Todd Gannon, “architecture’s basic magic is in how representations are mistaken for the world itself.” Architects propose solutions to massive social and environmental problems which become part of the language of everyday by the simple plausibility of their representations. Outlandish solutions, such as BIG’s The Big U or Superstudio’s Continuous Monument, become emblazoned on the mind through imagery; their work envisions a seductive, sometimes perhaps nightmarish, future.

The five projects that follow serve to suggest the abilities of thesis to propose solutions to manmade problems of physical or cultural nature; individual thesis problems and one collaborative design. Thesis falls into the realm of fantastic architecture, as it is generally unbuilt and unbuildable, to encourage the super real is to encourage innovation in problem solving.
The Ethical Imperative

Saving the Planet Through Thesis

Thesis exists in the in-between, the ambiguous space between real and unreal, proto-professional and professional, construction and vision. While thesis studio serves as a think tank for cultural observation, theoretical exploration, material exploitation, and architectural deviation, it is inherently about problem solving; affirmation through creation. Having mastered the architectural art of representation, the thesis student begins to think about things beyond their control and to bring about change by changing the facts of construction or culture. Sometimes thesis is about saving the world.

This particular thesis studio combines the nature of conceptualizing the big idea with experimental 1:1 scale objects, and individualized thesis projects with a collaborative installation. In this sense thesis projects characterize the ability of thesis to define, analyze, synthesize, and produce a solution to the deterioration of earth’s environment, cultural and infrastructural. Students hone their super powers through manifesto and research, allowing them to rant about what could be in addition to fueling innovation. Research leads to narrative and experimentation, while collaboration forms a bond through the studio that allows them to critique their work.

Architects use their ability of representation to propose the super real or surreal solution to problems, for example, Lebbeus Woods’ Quake City or High Houses. According to Todd Gannon, “architecture’s basic magic is in how representations are mistaken for the world itself.” Architects propose solutions to massive social and environmental problems which become part of the language of everyday life by the simple plausibility of their representations. Their work, such as BIG’s The Big U or Superstudio’s Continuous Monument, becomes emblazoned on the mind through imagery; their work envisions a seductive, sometimes perhaps nightmarish, future.

The five projects that follow serve to suggest the abilities of thesis to propose solutions to manmade problems of physical or cultural nature; individual thesis problems and one collaborative design. Thesis falls into the realm of fantastic architecture, as it is generally unbuilt and unbuildable, to encourage the super real is to encourage innovation in problem solving.

Project One: Source of radioactive contamination serves through disassembly to clean and return site to original condition.

Project Two: To fight effects of terrorism on architecture, the Feretory scans, duplicates, relocates what it can, and hides what it cannot.

Project Three: Desert site, once misoccupied, is repopulated through new uses – bath house, power grid, salt factory, battery storage, bird sanctuary.

Project Four: The Salton Sea is autonomously rebuilt from the products of its demise – dead fish and salt – creating a new building material to halt its disastrous and deadly wind storms.

Studio installation relocates to become new use as a community center pavilion in Ghana.

Book/Narrative

Concrete

Furniture

Site study

Model

Final model

Final model

Final narrative
Architecture study abroad programs in Rome are numerous among ACSA member schools. They range from short travel experiences to full degree programs. The programs which contain studio components are often in a dilemma. Do you keep a strong studio based environment where students work in the confines of a traditional studio space, or do you provide the opportunity for students to travel and study the environment which the city provides? The dilemma lies with the time that both activities take to be successful endeavors. The following describes a pedagogical approach that combines the strengths of both.

The studio is a semester long 4th Year design studio based in Rome, Italy. The city and surrounding areas of Rome not only became the laboratory for research, but become a physical extension of the studio. The studio takes advantage of both sketching and digital methods of design research. The course is broken up into two parts. The first part of the semester involves research and analysis, while the second part contains a four week design charrette. Between the two parts, the students engage in a week long design charrette with students from two other architecture programs, and a service learning activity with archeologists to document architectural fragments from the Capitoline Museum.

The first part of the studio has the students study the city through a series of sketch and hybrid drawings. The sketch assignments are designed for the students to look and find connections between the different layers of the city. The intention of the exercises are not to replicate what is seen, but to explore how the past architecture influenced the future layers of construction. The hybrid drawings are designed to explore both the “artifacts” and “spaces” that make up the palimpsest of the city. A more contemporary assignment has the students create a video exploring the spatial qualities of an Italian hill town. The combination of these assignments begins a conversation within the studio about the importance and relevancy of old “ruins” verses the needs of contemporary Italians. Each student keeps a design blog which includes their physical assignments along with critical analysis of the objects learned.

The second part of the studio has the students apply the knowledge that they obtained of the past within a contemporary context. Due to the remaining time constraints involved in a study abroad program, a four week design charrette is given to teams of three to four students. The project is designed to be entered into the annual ACSA Steel Student Design Competition. The students are encouraged not only to design a building, but to look at how the building could engage the urban fabric of the city.

The program combines everything from traditional in situ sketchbook assignments to collaborative design projects, all framed within short focused exercises. When combined and in sequence, the exercises mimic the palimpsest of city, providing the students a layering of historical, design, and cultural education.
Architecture study abroad programs in Rome are numerous among ACSA member schools. They range from short travel programs to full degree programs. The programs which contain studio components are often in a dilemma. Do you keep a strong studio based environment where students work in the confines of a traditional studio space, or do you provide the opportunity for in situ exploration of the city which the city provides? (Fig. 01-03) The dilemma lies with the time that both activities take to be successful endeavors. The following describes a pedagogical approach that combines the strengths of both.

The studio is a semester long 4th Year design studio based in Rome, Italy. The city and surrounding areas of Rome not only provide a rich history for research, but become a physical extension of the studio. The studio takes advantage of both sketching and digital methods of design research. (Fig. 04-10) The course is broken up into two parts. The first part of the semester involves the students studying the city through a series of sketch and hybrid drawings. The sketch drawings are created for the students to look and find connections between the different layers of the city. The intention of the exercises are not to replicate what is seen, but to explore how the past architecture influenced the future layers of construction. The students are encouraged to explore both the “artifacts” and “spaces” that make up the palimpsest of the city. (Fig. 11-16) A more contemporary assignment has the students create a video exploring the spatial qualities of an Italian hill town. The combination of these assignments within the studio about the importance and relevancy of old “ruins” verses the needs of contemporary Italians.

Each student keeps a design blog which includes their physical assignments along with critical analysis of the objects learned.

The second part of the studio has the students apply the knowledge that they obtained of the past within a contemporary design project. Time constraints involved in a study abroad program, a four week design charrette is given to teams of three to four students. (Fig 31-35) The project is designed to be entered into the annual ACSA Steel Student Design Competition. The assignment is to design a modern building, but to look at how the building could engage the urban fabric of the city. The program combines everything from traditional in situ sketchbook assignments to collaborative design projects, all framed within short and in sequence, the exercises mimic the palimpsest of city, providing the students a layering of historical, design, and cultural education.
Teaching Almost Natural Things

FAYSAL TABBARAH
American University of Sharjah

The research conducted in this sequence of studio and support courses problematizes the teaching about nature in undergraduate architecture education at a time of an increasing environmental crisis. Looking outside of contemporary academia and the discipline’s response to this crisis through the lens of ecological ethics, the essay describes a teaching pedagogy that challenges how most contemporary undergraduate architecture education teaches about nature in a way that reinforces the hegemony of the nature/culture binary that seems implausible and irrelevant with the advent of the Anthropocene. This teaching pedagogy, titled Almost Natural, actively asks students to think about architecture outside of nature/culture binaries and to conceive of it as neither, but as a vague Almost Natural condition that rejects traditional geometric hierarchies, linear part-to-whole relationships, pattern making, and precision, in favor of tactical organizations a blurring of part and whole, deep textures, and the painterly or gestural. Moreover, this pedagogy is conducted through the lens of computational design methodologies.

In the development of the Almost Natural pedagogical model, there exists a conscious and active rejection of the historical othering of nature as well as an understanding about the plurality of nature; that it can take many contradictory forms simultaneously. The pedagogy draws on the work of the environmental sociologist William Freudenburg, specifically his text on the conjoined constitution between nature and society where he argues for a blurring of the boundaries between the physical (i.e. natural) and the social (i.e. human-made).

Freudenburg rejects the three ways in which conventional sociology has traditionally viewed nature. The three categories include considering nature as completely separate and having little to no impact on society; placing nature and society on a hierarchical scale where one is given primacy over the other, or lastly, viewing nature and society as co-equal and balanced. As Freudenburg explains, viewing nature as separate, superior, subservient or balanced implies an explicit othering. His alternative, the notion that nature and society exist as two parts of a conjoined constitution, argues that there is little difference between nature and society in that what we might think of one is heavily influenced by the other. Viewed from this springboard, this teaching pedagogy explores this conjoined constitution between nature and society through an active blurring and subverting of an archaic understanding of nature as a detached and homogeneous thing that lies outside of the realm of making the built environment, an other to be framed for marveling at, or even worse, to be exploited.

The expressions of this teaching pedagogy both digital and material, exhibit a form of tactical organizations that combine typically mis-fitting geometries, a blurring of part and whole, deep textures, and the painterly or gestural. These are expressed in this poster as projects that deal with mass, line or as hybrids.

NOTE
TEACHING ALMOST NATURAL THINGS

By: John Doe

The research conducted in this sequence of studio and support courses problematizes the teaching about nature in undergraduate architecture education at a time of an increasing environmental crisis. Looking outside of contemporary academia and the discipline’s response to this crisis through the lens of ecological ethics, the essay describes a teaching pedagogy that challenges how most contemporary undergraduate architecture education teaches about nature in a way that reinforces the hegemony of the nature/culture binary that seems implausible and irrelevant with the advent of the Anthropocene. This teaching pedagogy, titled Almost Natural, actively asks students to think about architecture outside of nature/culture binaries and to conceive of it as neither, but as a vague Almost Natural condition that rejects traditional geometric hierarchies, linear part-to-whole relationships, pattern making, and precision, in favor of tactical organizations a blurring of part and whole, deep textures, and the painterly or gestural. Moreover, this pedagogy is conducted through the lens of computational design methodologies.

In the development of the Almost Natural pedagogical model, almost natural expressions of the natural abdication of nature are realized as an understanding about the plurality of nature that is not seen every consistently being maintained. The pedagogy shows on the one hand, an assertion toward environmental aesthetics2, and on the other a blurring of the binary (i.e. natural and the cultural) in nature and society. Formulating topics that these studies in computational methodologies have revealed, that nature is not separate from culture, the Almost Natural pedagogy draws on the work of the environmental sociologist William Freudenburg, specifically his text on the conjoined constitution between nature and society where he argues for a blurring of the boundaries between the physical (i.e. natural) and the social (i.e. human-made)1. Freudenburg rejects the three ways in which conventional sociology has traditionally viewed nature: considering nature as completely separate and having little to not impact on society; placing nature and society on a hierarchical scale where one is given primacy over the other, or lastly, viewing nature and society as co-equal and balanced. As Freudenburg explains, viewing nature as separate, superior, subservient or balanced implies an explicit othering. His alternative, the notion that nature and society exist as two parts of a conjoined constitution, argues that there is little difference between nature and society in that what we might think of one is heavily influenced by the other. Viewed from this springboard, this teaching pedagogy explores this conjoined constitution between nature and society through an active blurring and subverting of an archaic understanding of nature as detached and homogeneous thing the co-natural of the built environment, an endeavor to be focused on making us more aware, as the environmental

The expressions of this teaching pedagogy and the digital and material, exhibit a form of tactical organizations that combine typically mis-fitting geometries, a blurring of part and whole, deep textures, and the painterly or gestural. These are expressed in this poster as projects that deal with mass, line or as hybrids.

References:

Augmented Bubbles

Today, as a paradigm shift, head-mounted displays (HMD) are being reintroduced as mixed reality (MR) instruments. MR allows designers to interact with and experience the physical and virtual world simultaneously in an immersive environment. In a 1995 essay, “The Vision of Virtual Reality”, Biocca, Kim, and Levy argued that the “essential copy” and “physical transcendence” were important drivers in the generation of mixed realities. They described the search for the “essential copy” as seeking a “means to fool the senses—a display that provides a perfect illusory deception,” while “physical transcendence” is rooted in an “ancient desire for escape from the confines of the physical world, [to] free the mind from the ‘prison’ of a body” (Biocca, Kim, and Levy 1995, 7). This theoretical foundation, with the latest technology, has inspired us to explore the relationship between the separator and the physical space, the perception of action, time, space, and the physical body.

“Augmented Bubbles” is an installation that expands on computation and mixed reality work produced at the University of Cincinnati, School of Architecture and Interior Design. A digitally fabricated component is juxtaposed using the Microsoft HoloLens near-eye light-field display with its animated holographic simulation. Through sensory perception and the motor response of users, the HMD helps one perform sensorimotor and cognitive activities in a mixed reality world.

Initially, the project began as an exploration of patterns and structures in conjunction with the tendencies and behaviors of a material, in this case, flat sheets of matte polypropylene. Inspiration was drawn from two seemingly different yet intertwined sources: Islamic geometries and soap bubbles. The basis of any polygonal geometric pattern, no matter the complexity, can always be broken down into a series of triangles. Within these triangles lies an inherent logic by which they are organized and give rigidity to the assembly. This same concept is explained at length in Self-made Tapestry: Pattern Formation in Nature by Philip Ball (1999). Ball uses the underlying structure of bubbles and honeycombs to describe how geometries found in nature arise from an innate desire for equilibrium. Three site dependent armatures define the aggregation and modulation of the base unit in CATIA’s Sheetmetal Workbench. This platform allowed us to simulate the folding process of flat sheet materials. Parameters relative to weight, strength, and translucency were incorporated. Following, the location of connection holes was automated. Nylon arrowhead rivets were used wherever faces overlapped and zip-ties were employed wherever a hinge joint occurred. The fabrication and construction process expanded on the notion of skin and structure in architecture.

In the end, the digital bubble was reconstructed using the marching-cube algorithm. Free from the “essential copy” mindset, the new model is a symbolic simulation of reality. With the intention of blurring the real and the virtual, the model was eventually animated and further manipulated using Autodesk Maya and Unity. The virtual animation was controlled by the user’s gesture and voice. Through the HoloLens spectator system and its semi-transparent “optical see-through” screen, the students combined computer-generated images with a view of the real world.
AUGMENTED BUBBLES

The project began as an exploration of patterns and structures found in nature. The initial inspiration came from the study of soap bubbles and honeycombs, which are characterized by their ability to form stable configurations under the influence of surface tension. These natural formations demonstrate an inherent logic that can always be broken down into patterns, no matter the complexity. This property is a result of an equilibrium of forces, which often arise from an innate desire for rigidity to the assembly. This same strategy is employed in various biological and architectural applications.

The project concept is explained at length in Self-made Tapestry: Pattern Formation in Nature by Philip Ball (1999). Ball uses the underlying structure of soap bubbles and honeycombs to illustrate how geometries and soap bubbles are connected. The book highlights the methods for calculating the angles of contact between the faces of the bubbles, which is a critical aspect of the project.

The initial goal was to develop a method for constructing three-dimensional structures that could be fabricated using flat sheet materials. This involved the use of hinge joints, which allowed for the creation of complex geometries with a single piece of material. The project was developed using CATIA’s Sheetmetal Workbench, which provided the necessary tools for designing and fabricating the structures.

The fabrication process required the use of a variety of materials, including matte polypropylene. Inspiration was drawn from two seemingly different sources: Islamic geometries and soap bubbles. The project began as an exploration of patterns and tendencies and behaviors of a structure in conjunction with an exploration of patterns and tendencies and behaviors of a structure in conjunction with a digital model. Free from the notion of skin and structure in the digital model, the digital bubble was reconstructed using the marching-cube algorithm. Free from the notion of skin and structure in the digital model, the digital bubble was reconstructed using the marching-cube algorithm.

Materials were cut, formed, and assembled using CATIA’s Sheetmetal Workbench. This platform allowed us to simulate the folding process of flat sheet materials. Parameters relative to weight, strength, and translucency were incorporated. Following, the location of connection holes was automated. The fabrication and assembly were employed wherever a hinge joint occurred. The fabrication and assembly were employed wherever a hinge joint occurred.

This process was repeated for the assembly of tertiary armature with input points which were employed wherever a hinge joint occurred. The fabrication and assembly were employed wherever a hinge joint occurred.

Two cubes were assembled using CATIA’s Sheetmetal Workbench. One cube was assembled using CATIA’s Sheetmetal Workbench, and the other was assembled using CATIA’s Sheetmetal Workbench. These cubes were assembled using CATIA’s Sheetmetal Workbench, and the other was assembled using CATIA’s Sheetmetal Workbench.

The power copy: tertiary armature with input points was assembled using CATIA’s Sheetmetal Workbench. This assembly was used to simulate the folding process of flat sheet materials. Parameters relative to weight, strength, and translucency were incorporated. Following, the location of connection holes was automated. The fabrication and assembly were employed wherever a hinge joint occurred. The fabrication and assembly were employed wherever a hinge joint occurred.

For the final assembly, the digital bubble was reconstructed using the marching-cube algorithm. The digital bubble was reconstructed using the marching-cube algorithm. The digital bubble was reconstructed using the marching-cube algorithm. The digital bubble was reconstructed using the marching-cube algorithm. The digital bubble was reconstructed using the marching-cube algorithm.

Biologically inspired techniques were employed throughout the fabrication process. These techniques included the use of folding algorithms, which allowed for the creation of complex shapes with minimal material. The fabrication process also included the use of hinge joints, which provided the necessary flexibility for the final assembly.

The project was completed using a combination of computational techniques and traditional fabrication methods. The final assembly was a result of a collaborative effort between the designers and the fabricators, who worked together to bring the concept to life.

Acknowledgments:

Ming Tang, Associate Professor, University of Cincinnati
Mara Marcu, Assistant Professor, University of Cincinnati
Peter Foster, Bachelor of Science in Architecture 2017, University of Cincinnati
Adam Schueler, Bachelor of Science in Architecture 2017, University of Cincinnati
Anousha Alamgir, Bachelor of Science in Architecture 2017, University of Cincinnati
Framing Research for Design: Investigating the Context of Mass-Customized Dwelling in San Francisco

BRIAN KELLY
University of Nebraska-Lincoln

The ability to comprehensively understand the context of a future design proposal is essential to reducing generalizations and assumptions about place and user. A deeper understanding comes through intensive investigative research which seeks to reveal connections within a complex system. This project demonstrates one of several examples from an interdisciplinary design studio where students were challenged to interrogate the context of mass customized dwelling in the context of San Francisco, and to do so through the lens of seven systems.

1. Transportation: roadways, railways, infrastructure, rivers, airports, pedestrian ways, bicycle paths, etc.
2. Soft: information networks, money, government, energy, information, communication networks, etc.
3. Natural: ecology, environment, climate, wildlife, hydrology, soils, migrations, etc.
4. Social: rituals, culture, domestic structure, family structure, neighborhoods, community, government, etc.
5. Economic: money, import/export, GDP, taxes, incentives, job markets, industries, etc.
6. Jurisdictional: zoning, government, property lines, covenants, land rights, ownership, etc.
7. Construction: manufacturing, materials, fabrication, construction approval, workforce, regional techniques, trades/unions/organizations,

Design teams were asked to uncover information and communicate the synthesis of their understanding through a series of information graphics, maps, and diagrams which collectively communicate the foundation of their collaborative design research project. Building from the framework proposed by Kate Orff, systemic interrelations detailed key touch points and opportunities to intervene with thoughtful design projections.

Orff’s framework consists of the following:

1. Maps [orientation]: A layering of spatial data, geographical characteristics, and community narratives.
2. Data Narratives [analysis]: A decoding of the image by analyzing and revealing associated industrial or ecological processes.
3. Eco Portraits [synthesis]: Synthetic moments where a series of data prints and observations converge into an overall ecology or process view, joining seemingly isolated phenomena into a perceptible whole. 1

The graphic narrative communicates connective and dynamic traits of the systems offering a more robust and comprehensive understanding of place and user. Additional graphics expand or contract to describe alternative scale connections, flows, or movements. Publication spreads were restricted in quantity encouraging hybrid graphics with coexistent data and diagrammatic information.

In the end, the deliverables asked students to frame their subsequent design research investigation, outlined through (4) components. The DESCRIPTION is a contextual motivation intended to outline the connections and shortcomings/failures with a system, and leave the reader with a sense of urgency about a need to address it. The QUESTIONS outline the challenge and position the project inquiry with regard to mass customization, manufacturing and materiality, and the domestic structure. The METHODS describe the ways in which design teams engage the design process and issues outlined. Lastly, the SIGNIFICANCE positions the project in its disciplinary relevance.

Students followed this 2.5 week exercise with the design of a mass-customized dwelling fueled by the research generated. The results of the studio demonstrate the impact of a research for design phase which leads into intensive research by design efforts.

NOTE
The Ethical Imperative

FRAMING RESEARCH FOR DESIGN
Investigating the Context for Mass Customized Dwelling in San Francisco

Description
There is a severe lack of housing in California's major coastal communities. In these areas, community resistance to housing, environmental policies, and fiscal incentives hinder development. According to a 2015 report by the US Census Bureau, the high demand in these areas drives up cost and pushes the mid to low income population out of the city. San Francisco, with a projected population of over 400,000 in 2040, has a large portion of its coastline used for waterways and parks. According to the USGS, a large portion of the San Francisco coast will be under water by 2100. The shoreline with the existing piers is an underutilized asset, but according to NOAA projections, a large portion of the San Francisco Bay area will be under water by 2100.

Questions
1. How might we analyze existing and propose methods to utilize water communities?
2. In response to the housing crisis in San Francisco, how might we design atypical housing for low to medium income users?
3. Because of the disparity in low and medium income housing, how might we utilize mass customization in a multi-family program to provide authorship for each user type?
4. In response to a fast-paced, non-permanent cultural mentality, how might we design a dwelling for its entire life cycle, considering materiality, disassembly, and recyclability?

Methods
1. Research into fabrication methods of construction and erection through use of adaptive component modeling and small-scale prototyping as an approach that minimizes impact on the existing ecological site in the Bay area.
2. Employing parametric design and building performance modeling to optimize decisions and results, presenting the opportunity of mass production, customization, and efficiency in design.
3. Establishing the program, form, location, and materiality of the design through iterative studies relating to historical, cultural and social understandings of the site.

Significance
This investigation could foster a dialogue on solutions for the housing crisis of San Francisco and cultivate speculation on what dwelling means in a contemporary context. The design will focus on systems of mass customization for varying user types and prefabricated design with the intention of building system and material recyclability. This investigation has the potential to challenge current housing types and construction life cycles in the United States.
Supple[Core]: Interaction design as a design tool

EBRAHIM POUSTINCHI
Kent State University

ABSTRACT/PURPOSE
The use of computer and computational design is shifting and changing the design culture and design process radically. The rapid development of such approaches in architecture raises the concern that the full richness of human experience and evaluation may no longer be present in certain aspects of design, and that a gap may arise between the architect’s direct awareness of human needs and the ultimate, computationally-assisted design outcomes. (Kalantari, Poustinchi, 2017). In the context of an undergraduate design studio, the Supple[Core] project presents a mixed-method design-research investigation that integrates a Hybrid Digital–Physical design platform for developing a design language and designing an interior space using interaction design as a design tool.

METHOD:
Increasingly larger amounts of creative resources are being put into producing new tools and concepts that are designed not to make things but, to amplify the creative capacities of others (Lavin, 2015). The Supple[Core] research studio is based on the idea of previous research investigations where the design of the space is the result of human-based studies. Typically, these methods are highly relying on statistic data and analysis from either or both pre and post-occupancy evaluations. The Supple[Core] method, however, is studying how human-based design—through the lens of interaction can affect the design language or the design process.

Throughout the studio, students introduced to design computational techniques, visual programming, and interaction-design thinking, as scholarly design-research tools. Then, employing interaction and physical computational design techniques, students study the conceptual and theoretical supports of their design in an abstract field of force simulating design relationships between an object (massing core), landscape (ground condition), and an interactive “surface”.

PROCESS:
Students started with a literature review of existing “interactive” architectural components such as doors, windows, and sliding walls and looked their design and interactive characteristics such as volumetric, tectonic, surface and vector qualities and conditions. As the second phase, they developed and used an interactive design scenario between an Object, Landscape and a surface, to study the potentials of animated components in regards to developing spatial configuration. Students used advanced digital fabrication techniques such as CNC milling, plaster casting using the CNC milled molds, 3D printing, and laser-cutting, to fabricate physical models of their conceptual studies on Object, Landscape, and the surface. Activating/animating the physical models, using Arduino Microcontroller, servo motors, and linear actuators, they have been able to develop a “mechanical machine” to study visual statements and dialogues between “core” and architectural elements in the space: Massing, ground condition, and interiors surfaces.

In the next and the final step, using the object/landscape/surface machine, each student translated these studies into a design language that informs their design for a social media creative studio space, using the design potential and possibilities explored in the interactive digital and physical computational design process.

The most significant outcome of the Supple[Core] studio, is to introduce and use interaction design—through digital design, fabrication and physical computation, as a new form of a design tool for architectural design. This studio encouraged students as junior researchers to question their digital and analog design tools, through a hybridized digital/physical platform of an interactive design process.
SUPPLECORE: Interaction Design, As a Design Tool

EIRAHIM POUSTINCHI [Kent State University, United States, epoustinchikent.edu]

ABSTRACT

PURPOSE: The use of computer and computational design is shifting and changing the design culture and design process radically. The rapid development of such approaches in architecture signals the concern that the full impact of digital design is not currently being realized, and that a gap may arise between the architects’ direct awareness of human needs and the ultimately, computationally-assisted design outcomes. (Katuarian, Poustinchik, 2015). In the context of an undergraduate design studio, the SUPPLECORE project presents a mixed-method design-research investigation method for understanding human interaction with design language and designing an interior space using interaction design as a design tool.

METHOD: Increasingly larger amounts of creative resources are being put into producing new tools and concepts that are designed to make things look, function, and create creative capacities of others (Levin, 2015). The SUPPLECORE research studio is based on the idea of previous research investigations where the design of the space and the space-design process is conceived as an overall design language and is developed within such a design process. The SUPPLECORE method seeks to explore defining how human-based design—through the lens of interaction—can affect the design language or the design process.

Throughout the studio, students introduced to design computational techniques, visual programming, and interaction-design thinking as a scholarly design research tools. Then, employing interaction and physical computational design techniques, students study the conceptual and theoretical supports of their design and abstract field of forces simulating design relationships between object/thing (sensing cone), landscape (ground condition), and an interactive

PROCESS:

Students started with a literature review of existing “Interactive” architectural components such as chairs, windows, and sliding walls and architectural form design and interactive characteristics such as volumetric, tectonic, surface and vector qualities and conditions. In the second phase, they developed and sent out six interactive design scenarios between the object, landscape, and surface, to study the potentials of ornament connected in regards to developing special scenarios for digital and physical objects, such as CNC milling, planar casting using the CNC mills, printing, and laser cutting, for fabricate physical modules of their conceptual interactions. Object, landscape, and their surface interaction, instead of using physical models, using Autodesk MicroStation, 3D modeling, and linear interactive, they have been able to develop a virtual environment that simulates similar scenarios between the form and architectural elements in the space. Manipulating ground conditions, and interactive surfaces.

In the next and the final step, using the object/landscape/surface machine, each student translated these studies into design language that informs their design that explored the possibilities explored in the SUPPLECORE method—of physically digital and physical computational design processes.

The most significant outcome of the SUPPLECORE studio is to introduce and use interaction design through digital design, interaction and physical computation, as a new form of a design tool for architectural design. This studio encouraged students to rethink their digital and analog design tools, through a hybridized digital/physical platform of an interactive design process.

REFERENCES

The Living Archive and the Sublime Nature of the Anthropocene: A Design Studio Model

JULIE LARSEN
Syracuse University

At the 2015 UN Conference on Climate Change in Paris France, 195 nations reached a decision to commit to decrease the severe effects of climate change on the planet. As we embark what some call the Anthropocene Era, we bare witness to how civilization has impacted the Earth’s ecosystem, diminishing its resources and threatening its biodiversity. With this shift in our ecosystem, a new pedagogical model for a graduate architecture studio responded to the Anthropocene through a technologically sublime intervention: The Living Archive, a new architectural type capturing the magnitude of Earth’s inevitable transformation. The ‘living archive’ program is not meant to be a stable, secure vessel but uses technological invention to bracket what is being invaded by human existence. Through the invention of an ‘archiving machine’, the studio used technological speculation to question what nature can or will become. The aim was to use ‘living archive’ as a physical commentary or critique on our current relationship to the environment. The poster describes three studio projects that speculate on the inevitable future of different environments. Through analysis, technological research, and formal aspirations, each project embodies a potential reality and potential future of the Anthropocene.

The Living Archive Scenario is that the environment and its water bodies are changing for the worse, potentially flooded, absorbed, melted, dried up, or obsolete. As a project, the archive becomes its own critique on the abundance of global and ecological change happening in the world today. The living archive is not a stable, secure vessel but preserves the environment by using technological invention to frame what is being invaded by human existence. The production of nature, is the belief that societies make nature and force us to consider what nature has been and may yet become (Gissen 2010). With the production of nature, there is an opportunity for a living archive to frame new potential in the role of production within a particular environment that is no longer productive or has the potential to become more so. Through the invention of an archiving machine, the studio used technological speculation as a way to define a new architectural type of production that questions what nature can or will become. The ‘living archive’ as a machine becomes a design speculation that reveals the sublime nature of a place, its impact on culture through new technological intervention, and its position within the context of the Anthropocene.
The Ethical Imperative

THE LIVING ARCHIVE
AND THE ORIGINS OF THE ANTHROPOCENE: A DESIGN STUDY MODEL

In the 2016.991 course on Climate Design in Paris, France, 91 students embarked on a design project to investigate the concept of the living archive and its implications in the Anthropocene era. The students were tasked with exploring how the environment and its natural resources are impacted by human activity, and how these impacts can be recorded and preserved through new technological interventions.

The 'living archive' as a design speculation reveals the sublime nature of the Anthropocene. The living archive never stops growing as additional ice captures natural icebergs that migrate into the 'fast ice' composite along the shoreline. The archive becomes a commentary on the never-ending exploitation of the vast ocean. The living archive becomes its own critique on the abundance of global and ecological change happening in the world today. The living archive is not a stable, secure vessel but preserves the environment in a new, changing world.

The Living Archive Scenario is that the environment and its water bodies are changing for the worse. Desertification is occurring, nitrous oxide emissions are at an all-time high, and the rate of ice drift and glacier movement during the winter season was an opportunity to reflect on the vulnerabilities and fragility of the Arctic ecosystem. A new pedagogical model for a graduate architecture studio responded to the rate of ice drift and glacier movement during the winter season, the status quo of the arctic ice shelf. Their machine was designed as a water tank system, run on wave turbines that freeze and move water through liquid refrigerant piping to produce ice modules for artificial icebergs. The result was a series of iterative formal studies of ice module accumulation. The tri-prong

The Bloom Machine investigated the Savannah biome in Africa, found that due to the increasing rate of CO2 fertilization and decreasing rainfall in the northern Sahel of the Grasslands and Savannah, the deforestation of woodlands, which is known as the carbon-dioxide fertilization effect (Hille et al., 2016). Their archiving machine, known as 'Bloom', sequestered the CO2 by capturing the CO2 from the atmosphere and converting it in a series of absorbent, balloon-like structures with sensors on the skin allowing the CO2 to be absorbed and released as fuel over time.

- The 'bloom' group studied the impact of CO2 fertilization and decreasing rainfall in the northern Sahel of the Grasslands and Savannah biome, found that the loss of CO2 due to deforestation of woodlands and the shift to desertification was changing the biome. To combat this, they studied the effect of CO2 on the ecosystem, discovered that the excess of CO2 could be captured and converted to fuel over time. The Bloom Machine worked by collecting CO2 from the atmosphere and converting it into a series of absorbent, balloon-like structures that can be released as fuel over time.

- The 'dunescape' group studied desertification in the Desert biome and depleting aquifers due to irrigation in arid regions like Saudi Arabia, found that desertification is causing previously arable land to become desert and unusable. To combat this, they studied the wind patterns and areas at risk in Dammam, Saudi Arabia, to understand the rate at which desertification is occurring. The students studied Magnus Larsson's research on bacillus pasteuri, which is a bacterium that turns sand into sandstone, and its potential for future growth of the lake over several years as the Blooms of Lake Chad. The Bloom Archive was designed to be a commentary on the future of water bodies in the Savannah biome, and it provides the potential for future growth of the lake over several years as the Blooms of Lake Chad. The Bloom Machine worked by collecting CO2 from the atmosphere and converting it into a series of absorbent, balloon-like structures that can be released as fuel over time.

- The 'constructing ice' group studied glacier movement and the freeze / thaw cycle of the Arctic biome to understand the rate at which ice was forming and melting. To combat this, they studied the effect of CO2 on the ecosystem, discovered that the excess of CO2 could be captured and converted to fuel over time. The Bloom Machine worked by collecting CO2 from the atmosphere and converting it into a series of absorbent, balloon-like structures that can be released as fuel over time.

Through the invention of an 'archiving machine', the students were able to capture the magnitude of Earth's inevitable transformation. The 'living archive' as a design speculation became a new pedagogical model for a graduate architecture studio that responded to the changing environment.

The poster describes three studio projects that speculate on the inevitable change in the environment and its water bodies. The students examined how the environment is changing for the worse, and how new techniques can be used to capture and preserve the environment in a changing world. Through the invention of an 'archiving machine', the students were able to capture the magnitude of Earth's inevitable transformation. The 'living archive' as a design speculation became a new pedagogical model for a graduate architecture studio that responded to the changing environment.
HISTORY/THEORY
Today, the necessary versatility of the limited common space in our cities and our transient lifestyle establish a contemporary framework to reevaluate the work of collapsible and transformable built environments and their potential to produce lightweight and affordable solutions. In a call to rethink the impermanence of space, the project ‘Deploy’ interrogates the context of the last fifty years of Spanish architecture with the intention of developing a framework to question the possibilities of deployable structures within the public realm. The project looks from the mechanics in the structural prototypes of Spanish architect Emilio Perez Pinero in the 60’s, that attempted to provide an illusory flexible space in a post-war era, to the contemporary post-economic-crisis proposals such as the ‘Escaravox’ by Andres Jaque, ‘Eco-Boulevard’ by Ecosistemas Urbanos and ‘El Circo’ by Santiago Cirugeda, which hold a critical position with their current urban context.

The positive assets of these projects contribution to the public realm provide a further exploration and testing of future spatial possibilities that promote a stronger and more socially diverse collective. Piñero’s work on designing a collapsible space frame structure, based on the logics of the equilateral triangle found in Fuller’s geodesic dome, was able to articulate two important factors. First, its use of lightweight easily transportable materials, and secondly the ability for the structure to be erected with ease. More specifically the design showed innovation in resolving problems of mobility, since the structures could be transported in one piece, making in place assembly unnecessary and reducing the need for multiple parts. In addition to his technical advances, Piñero was able to participate in new trajectories found in disciplinary discourse that were concerned with future thinking and utopian visions of non-permanence in the collective realm. His structural prototype for an ephemeral mobile theatre was a response to the desire of a new kind of improvisational architecture. A crucial statement which led the first attempts to the shifting cultural and social conditions of the rigid political dictatorship in Spain at the time.

Past and present projects illustrate the use of lightweight architectures as non-permanent and flexible catalysts for the collective experience that have provided spaces in support of social, sustainable, political and cultural development of our cities. Contemporary proposals mark a return or continuation of an invested interest in the collective space alternatives in a more politically-involved, sustainable and participatory society. A society whose demands require closer attention by designers who leverage lighter, quicker and cheaper mechanisms to support change. By revisiting Piñero’s work, Deploy led to the design and construction of a prototypical structure that intends to further demonstrate the ability for these deployable architectural proposals to ‘stage’ new relationship between the citizens and the city. As the Spanish urbanist Jordi Borja states, these ‘projects and the management of public spaces and collective facilities are both an opportunity to produce citizenship and a test of its development.’
Today, the necessary versatility of the limited common space in our cities and our transient lifestyle establish a contemporary framework to reevaluate the role ofbuildable and transformable built environments, and their potential to produce lightweight and affordable culturally...

In a call to rethink the impermanence of space, the project 'Deploy' interrogates the context of the last fifty years of Spanish architecture and first explores the concept of designing a framework to question the possibilities of deployable structures within the public realm. The project looks from the mechanics in the structural prototypes of Spanish architect Emilio Perez Pinero in the 60’s, that attempted to...

The positive assets of these projects contribution to the public realm provide a further exploration and testing of future spatial possibilities that propose to increase the comfort, accessibility and mobility of the urban public space. Emilio Perez Pinero’s efforts in designing a collapsible space frame structure, based on the topology of the equilateral triangle found in the dome of geodesic structures, was able to articulate two important factors. First, the desire of lightweight, easily transportable, and affordable materials that extend the life of the structure to be easily re-used. These materials were able to be found in the materials of the structural prototypes that were the subject of his research and experimentation. His structural prototype for an ephemeral mobile theatre was an example of the desire for an ephemeral non-permanent architecture. A crucial statement which led to the first attempts to the designing public and urban environments in the post-war period was the need to re-examine and to rethink the role of the public space. Emilio Perez Pinero's work was a response to the desire of a new kind of improvisational architecture. A crucial statement which led the first attempts to the rethinking of the public space.

Past and present projects illustrate the use of lightweight architectures as non-permanent and flexible catalysts for the collective experience that have provided spaces in support of social, sustainable, political and cultural development of our cities. Contemporary proposals mark a return or continuation of an invested interest in the collective space alternatives in a more politically-involved, whose demands require closer attention by designers who leverage lighter, quicker and cheaper mechanisms to support change. By revisiting Emilio Perez Pinero's work, the project 'Deploy' led to the design and construction of a prototypical structure that intends...

1. Pinero + prototype
2. Pinero + UIA design 1960
3. Pinero + Dali - Vidriera Hipercúbica 1972
4. 'Deploy' Details
5. 'Deploy' Taubman College RTM Exhibition 2017
6. 'Deploy' Free City Flint Public Art festival 2017

7. 'Deploy' Taubman College RTM Exhibition 2017
8. 'Deploy' Free City Flint Public Art festival 2017
Architectural Ghosts: Storytelling & the Architectural Imaginary

ZOE LYNNE COPE
University of Nebraska-Lincoln

‘Architectural Ghosts’ proposes architecture as a series of eleven speculative cities that function as characters engaged in a theatrical masque set in contemporary Rome, Italy.

A re-imagining of the novel Invisible Cities by Italo Calvino, this project utilizes narrative storytelling as architectural medium, method and site. The framework of the original novel was analyzed, collapsed and re-written in a contemporary context. The project offers a critique of the use of the novel in architectural education and challenges the marginalized role of women presented in both the original text and throughout much of architectural history.

Calvino used cities as metaphors for women conquered by powerful male explorers. In this project, each city was designed and illustrated relative to site, theme and the work of a prominent female storyteller, philosopher, or architect as a way to presence their ghosts. Much of the research was oriented around unearthing the accomplishments of women engaged in a partnership wherein a male counterpart received credit for much of the work. The plot is structured by an overarching conversation between a female narrator and a male character. Desire for what her voice brings into being creates a tension that drives the entirety of the plot, representation and sequencing of architectural experiences. Eventually, it is revealed that she herself is also a city; she too is a ghost catalyzed by architectural and phenomenological experiences that imply presence.

This project explores ‘architectural ghosts’ as allegory for the presence of the absence of presence that reveals architecture as performance. The universal gap between lived experience and representation is explored as primary function of the paradox of human desire. Literary narrative is utilized as structure for the gap of philosophical lack and as active agent for the discrete, conditional alignments that generate and inform productive encounters with the architectural imaginary. The masque, as performance between complex characters, reveals the individual and collective nature of architecture, cities and the stories we tell about both.
Falsehoods are in both words & things.
Not in things, but in words.

Signifier/Signified Axonometric Collapse

City of Signs - Cinecitá

Tower 1
Tower 2
Tower 3

plan
plan
plan

plan

3. See of Justice
2. Vertebrae

plan

1

3. Switchbord Hinge

1. Architectural Ghosts’ is a re-imagining of Italo Calvino’s seminal work, embedded in the historical and cultural imaginary of Rome, Italy.

2. Soils Laboratory

3. Lockbox

2. Rhythms

ii. Obelisk of Internal
i. Wind Tower

4. Character 04
3. Circus
2. Forecourt
1. Hedge

SEQUENCE

Seductive Plots
Acts of the Apostles

6. Plan (New Basilica)
4. Shadow
6. The Great Bell

8. Preservation Facility

3. Character 07
3. Throat
2. Foreplay
6. Search for Beloved
5. Desire Maintained
4. (The Fall)
3. Purification
2. Foreplay

6. Plan (New Basilica)
4. Shadow
6. The Great Bell

3. Character 07
3. Throat
2. Foreplay
6. Search for Beloved
5. Desire Maintained
4. (The Fall)
3. Purification
2. Foreplay

8. Preservation Facility

Tower Scar

Architecture of secrecy is a delightfully colorful world.

6. Search for Beloved
5. Desire Maintained
4. (The Fall)
3. Purification
2. Foreplay

8. Preservation Facility

Tower Scar

Architecture of secrecy is a delightfully colorful world.

6. Search for Beloved
5. Desire Maintained
4. (The Fall)
3. Purification
2. Foreplay

8. Preservation Facility

Tower Scar

Architecture of secrecy is a delightfully colorful world.

6. Search for Beloved
5. Desire Maintained
4. (The Fall)
3. Purification
2. Foreplay

8. Preservation Facility

Tower Scar

Architecture of secrecy is a delightfully colorful world.

6. Search for Beloved
5. Desire Maintained
4. (The Fall)
3. Purification
2. Foreplay

8. Preservation Facility

Tower Scar

Architecture of secrecy is a delightfully colorful world.
Façade is the architectural place where private and public meet and the building’s “face”. The designer can design the façade to express the inside, the reaction to the outside, or as an independent mask hiding the interiors. But façade can be not only a mere skin, but a device with depth, density, thickness. The portals and prothyrums in medieval religious buildings are devices that anticipates the rituals and spaces of the interiors.

In many examples the façade, besides of being a cultural or political representation of the clients, becomes an interior place, a space to live, move, stay in.

This kind of façade is represented by two paradigms by Andrea Palladio. One is Redentore church façade in Venice, designed by the overlapping of five façades, each belonging to a component of the interior space.

The second is Palazzo Chiericati in Vicenza, actually a “façade-building” characterized by two loggias. The one on the ground floor belongs to the city as a public space, shady, protected and safe: actually, an urban interior. The upper loggia belongs to the residents’ private realm, where they can experience the outside, through a privileged view to the city, but it’s also as a “theatrical stage” where the family’s power and wealth was shown to the people.

Another example of the facade as interior space is Villa Wiegand by Behrens, who uses a classical interior element of the roman house, the peristylium, and transforms it in façade. Instead of building the villa around the peristyle, like in the roman house, he moves it outside, between the street and the entrance door, as a filter between public and private space. The process is clear and strong: the peristylium, which originally should have been in the heart of the house, has been moved outside, in direct contact with the street. The classical order of the entrance in the roman domus street-entrance-vestibule-atrium-peristylium, is changed into street-peristylium-entrance-vestibule.

The other meaning of this is rhetorical: since Wiegand was an archaeologist, the building from outside becomes a statement, a sort of architecture parlante, telling us something about the client’s role, profession, interests, status.

Although Le Corbusier rarely quotes Palladio as a precedent, often we can find his influence in his work. In particular when he works on the façade topic, feeling the necessity to give depth and strength to his elevations, the two paradigms seem to appear on Corbu’s work. The overlapping of layers, each belonging to different elements, is the compositional principle of his purist paintings, which he applies to his building façades too, like in House Curutchet, where the overlapping becomes a tool to build an interior. The layers of sun-breaker, structure, pan de verre, floors and roof build this façade, detached from the rest of the house like in Villa Wiegand (a project he worked on when he was in Berlin), open to the street and to the park in front of it. But it isn’t only an elevation, it’s an architectural interior: it’s Dr. Curutchet’s clinic with above a hanging garden, protected by a concrete canopy, a room in the open space facing the park. It’s an interior space, transparent and open towards outside, it’s the place of life and work that belongs, together with the courtyard where the ramp is, both to the house and to the city.
In many examples the façade, besides of being a cultural or political representation of the clients, actually becomes an interior place, a space to live, move, stay in. This kind of façade can be represented by two paradigms by Andrea Palladio. One is the façade of Redentore church in Venice, designed by the overlapping of five facades, each belonging to a component that build the whole spatial entity of interior space.

The second is Palazzo Chiericati in Vicenza, actually a “façade-building” characterized by two continuous loggias. The one on the ground floor belongs to the city as a public space, shady, protected and safe; actually, an urban interior. The upper loggia belongs to the residents’ private realm, where they can experience another way of dealing with the outside, through a privileged view to the city, but it’s also as a “theatrical stage” where the family’s power and wealth was shown to the people.

The façade is the architectural place where private and public meet and it’s the building’s “face”. The designer can use the façade to reveal the inside or design it as a reaction to the outside, or as an independent mask hiding the interiors. But façade can be designed not as a mere skin, but as a device with depth, density, thickness. The portals and prothyrums in medieval religious buildings are devices that anticipates the rituals and spaces of the interiors.

In Villa Wiegand Behrens takes a classical interior element of the roman house, the peristylium, and transforms it in façade: the interior becomes an exterior. Instead of building the villa around the peristylium, how it happens in the roman house, he moves it outside, putting it between the limit of the street and the entrance door, a filter between the public space and the private space. The process is clear and strong: the peristylium, which originally should have been in the heart of the house, has been moved outside, in direct contact with the street. The “natural” order of the entrance sequence of the roman domus street-entrance-vestibule-atrium-peristylium, is changed into street-peristylium-entrance-vestibule. The other meaning of this is rhetorical: as Wiegand was an archaeologist, the building from outside becomes a statement, a sort of architecture parlante, telling us something about the client role, profession, interests, and status.

Although Le Corbusier rarely quotes Palladio as a precedent, I think that often the lesson of the Italian master is recognizable in his work. In particular when he works on the façade topic, feeling the necessity to give depth and strength to his elevations, the two paradigms seem to appear on Corbu’s drawing table. The overlapping of layers, each belonging to different parts and elements, is the compositional principle we can find in the purist paintings of the young Jeanneret. A principle that he applies to the façades of his buildings too, like in House Curutchet, where the overlapping becomes a tool to build an interior. The layers of sun-breaker, structure, pan de verre, floors and roof build this façade, detached from the rest of the house like in Behrens’ Villa Wiegand (a project he worked on when he was in Berlin), open to the street and to the park in front of it. But it isn’t only an elevation, it’s an architectural interior: it’s Dr. Curutchet’s clinic with above a hanging garden, protected by a concrete canopy, a room in the open space facing the park. It’s an interior space, transparent and open towards outside, it’s the place of life and work that belongs, together with the courtyard where the ramp is, both to the house and to the city.

THE FAÇADE AS AN ARCHITECTURAL INTERIOR
This project puts architectural theory into practice by asking second year architecture students to make a book cover for a contemporary theory book. The idea is to visualize written essays and architectural thought by having architecture students design, plan and build a book cover selected from a list of sixty books. From a pedagogical point of view it was important to create a seminar where each student has the opportunity to explore, express, and conclude by physical means while reading and learning. Connecting reason and knowledge with formal expression is the fundamental challenge for this assignment.

Reading an architectural theory and making a book cover that reflects on the content of the book engages and inspires architecture students that often become a passive listener or observer in theory seminars. The instructor gave only ten lectures throughout the semester. This allows more time for other assignments, such as the book cover project, making it possible to foster a deeper exploration of knowledge and critical thinking for the emerging architect.

More than a decade ago I discovered a book cover assignment created by associate professor Margarita McGrath. She developed this idea while teaching a professional practice seminar at the School of Architecture + Design, Virginia Tech. In the last four years I have slightly altered the pedagogical principles of her concept. The assignment was in part influenced by three books reflecting on a similar didactic approach. In the book ‘The Thinking Hand’ Juhani Pallasmaa has written extensively about haptic and tactile properties. Those are the primary pedagogical objectives for the book cover assignment, but the assignment was also influenced by questioning how to visualize fundamental observations in science such as the theory of quantum mechanics as discussed by Tor Nørretranders in the book ‘Indivisibility’. Furthermore, I was inspired by Marco Frascari referencing Robin Evans and his observation that “architects do not build, but merely draw” in the book ‘Eleven Exercises in the art of architectural drawing’ with the excellent subtitle ‘Slow food for the architect’s imagination’.

The field of architectural theory is challenged by new emerging technologies and research itself has shifted. Libraries are physical rooms with knowledge being accessible horizontally. Books are ordered by categories and therefore presented in a certain order. When doing research online, architecture students embrace a world that is vertical. The order of knowledge is by subject and accessible one at a time, presented similar to a deck of cards or to stacked newspapers. There is no taxonomy. This limits research when one seeks to compare knowledge. From a scholarly point of view the online knowledge can be extremely powerful when one knows what subject to seek out, but how does the 2nd year architecture students navigate this approach? It would be interesting to completely redevelop a seminar like architectural theory and embrace the horizontal and vertical approach at the same time. The book cover assignment could be developed towards a more virtual approach if technology could make computers more haptic. We need architects that are integrative thinkers when designing - that embrace knowledge, skills, and craftsmanship at the same time.

NOTES
History/Theory – The Ethical Imperative

This project puts architectural theory into practice by putting on a book cover for a contemporary theory book. The idea is to visualize written reason and architectural thought in a way that architecture students can use. We have found a book cover that comes from a list of thirty books. From these books, we have selected those that have the potential to engage, express, and translate into graphic elements and spaces. Connecting reason and knowledge with formal expression is the fundamental challenge for this exhibition.

Reading an architectural theory and making a book cover that reflects on the content of the book engages and inspires architecture students. This can sometimes present difficulties in making a book cover, but the metaphor of the book cover can be used to enhance the aesthetic potential of the graphic design. The design images can be used as a tool to direct the students’ work on making a book cover to reflect the character of the book.

More than a decade ago, I discovered a book cover assignment created by the late professor Emeritus Neil Harding. He developed this idea into teaching a professional practice seminar on the history of architecture and design. The students were asked to make a book cover that was to be placed on the cover of a book by a given author. The book cover assignment provided an opportunity to develop a new notion of the idea of the book cover as an extension of the content of the book.

This book cover assignment is an integral part of the design process for a book. It is a way to engage the student with the content of the book. By working on a book cover, the student is able to explore the concept of the book and its content. The students are able to express their ideas and thoughts through the book cover. The book cover can become a window into the world of the book.

The field of architectural theory is challenged by new emerging trends and ideas. The field is constantly evolving and change is inevitable. The order of knowledge is by subject and discipline, and the emerging technologies and research itself has shifted the way we think about the field.

The key to success is to understand how knowledge is organized and how it is related to other knowledge. The field of architectural theory is challenged by new emerging trends and ideas. The field is constantly evolving and change is inevitable. The order of knowledge is by subject and discipline, and the emerging technologies and research itself has shifted the way we think about the field.

The key to success is to understand how knowledge is organized and how it is related to other knowledge. The field of architectural theory is challenged by new emerging trends and ideas. The field is constantly evolving and change is inevitable. The order of knowledge is by subject and discipline, and the emerging technologies and research itself has shifted the way we think about the field.

The key to success is to understand how knowledge is organized and how it is related to other knowledge. The field of architectural theory is challenged by new emerging trends and ideas. The field is constantly evolving and change is inevitable. The order of knowledge is by subject and discipline, and the emerging technologies and research itself has shifted the way we think about the field.
Spaces of Strategic Adaptation

JOSEPH M. GODLEWSKI
Syracuse University

Calabar, Nigeria is a city of continual fragmentation and transformation. Previously known as Old Calabar, the city’s decentralized urban landscape challenges hidebound characterizations of African cities as spatially distant and timeless entities, disconnected from the world at large. Calabar has a rich, multi-ethnic, and cosmopolitan history as an international trading emporium and slaving port extending back centuries (Fig. 1). Much scholarly attention has been paid to the history of the city, though the few histories which explicitly address the traditional and colonial architecture of Calabar is often quite general. Focusing on discrete formalized elements, they inadequately address the social, economic, and spiritual forces that have informed the city’s urban character. Far from existing in a homeostatic condition, the spatial politics in Calabar have been characterized by internecine warfare, competing trade houses, and fraught encounters between foreign, local, and otherworldly agents such as those associated with the Ekpe secret society and Christianity (Fig. 2). The flexible and mobile spaces making up the city’s urban fabric since its beginnings in the sixteenth century have been linked with diasporic and transnational flows of people, capital, and culture. It is argued that these impermanent and networked architectures prefigure the architectural spaces of neoliberalism existing globally today (Fig. 3).

Borrowing the concept of “paradigmatic spaces”, this research is organized around a series of spatial designations, or diagrams of spatial relationships that were exemplary during a given time period in Calabar’s urban history. This research employs four spatial paradigms as representative of particular sociohistorical relationships in Calabar—the traditional Efik compound, the Ekpe lodge, the Iron Place of King Eyamba V, and the colonial era Old Residency (Figs. 4-7). The historical imbrication of these four models combined with a flexible application of their spatio-temporal boundaries, provide a useful matrix for understanding the architectural and urban history of Calabar.

In taking a historical perspective in analyzing Calabar’s built environment, this study complicates linear assumptions about progress and backwardness in the scholarship on globalization and cities. The enclave zones in contemporary Calabar are not a new phenomenon or anomalous after-effects of neoliberalism, but spaces entangled in the spiritual and economic history of the city. Though the project seeks to describe instances of congruence between pre-modern and contemporary Calabar, the purpose is to describe how spatial conditions from various historical periods can co-exist in non-linear ways, linking, competing, and contesting one another.

At each historical moment in Calabar’s history, different aspects were prioritized. It is speculated the spaces of strategic adaptation in the city served as interfaces between different groups, but also as portals or thresholds between life worlds—spatially and temporally (Fig. 8). While the appearance and representation of spaces may suggest a clear inside-outside relationship, the lived reality of Calabar’s space-time fabric reveals that they were sites of transition, intermixture, and association. These spaces linked the forested regions of the interior with the trade routes of the Atlantic, while also connecting economic spaces of exchange with those of mythic spiritual entities.
Calabar, Nigeria is a city of scattered populations and transformations. Presently known as Old Calabar, the city's history is marked by episodes of fragmentation and transformation, disconnected from the world to a large extent. Calabar has a rich, multi-ethnic, and cosmopolitan history as an international trading emporium and slaving port extending back centuries (Fig. 1). Many scholarly attention has been paid to the history of Calabar, though the few histories which explicitly address traditional and colonial architectures of Calabar is often quite general. Focusing on discrete formalized elements, inadequate address the social, economic, and spiritual forces that have informed the city's urban character. Far from existing in a homeostatic condition, the spatial politics in Calabar have been characterized by internecine warfare, competing trade houses, and fraught encounters between foreign, local, and otherworldly agents such as those associated with the Ekpe secret society, and Christianity (Fig. 2).

The flexible and mobile spaces making up the city's urban fabric since its beginnings in the sixteenth century have been linked with diasporic and transnational flows of people, capital, and culture. It is argued that these impermanent and networked architectures prefigure the architectural spaces of neoliberalism existing globally today (Fig. 3).

Borrowing the concept of “paradigmatic spaces,” this research is organized around a series of spatial designations, or diagrams of spatial relationships that were exemplary during a given time period in Calabar's urban history. This research employs five spatial paradigms as representations of particular socio-historical relationships in Calabar—the traditional Efik compound, the Ekpe lodge, the Iron Place of King Eyamba V, and the colonial era Old Residency (Figs. 4-7). The historical imbrication of these four models combined with a flexible application of their spatio-temporal boundaries, provide a useful matrix for understanding the architectural and urban history of Calabar. In taking a historical perspective in analyzing Calabar's built environment, this study complicates linear assumptions about progress and backwardness in the scholarship on globalization and cities. The enclave zones in contemporary Calabar are not a new phenomenon or anomalous after-effects of neoliberalism, but spaces entangled in the spiritual and economic history of the city. Though the project seeks to describe instances of congruence between pre-modern and contemporary Calabar, the purpose is to describe how spatial conditions from various historical periods can coexist in a non-linear way, linking, competing, and contesting one another.

At each historical moment in Calabar's history, different aspects were prioritized. It is speculated the spaces of strategic adaptation in the city served as interfaces between different groups, but also as portals or thresholds between the world—spatially and temporally (Fig. 8). While the appearance and representation of spaces vary, research has identified thresholds between the lives lived of Calabar's spaces make clear reveals that they were sites of innovation, meaning, and association. These spaces held the temporal and spiritual coordinates of the city, while also accommodating spaces of exchange with those of religious, spiritual, and commercial centrality.

Sources

Fig. 1. “A View of Calabar” (1725) (Source: Le commerce de l’Amérique par Marseille, 1764). Engravings by Serge Daget.

Fig. 2. “Image” of Nkanda Grade of Egbo with Emblem “Ekabe Nkanda” (1912) (Source: Percy Amaury Talbot, In the Shadow of the Bush, plate facing 42).

Fig. 3. Calabar Nigeria (Source: drawing by the author, 2017).

Fig. 4. Traditional Efik Compound, c. 1830

Fig. 5. Ekpe Shrine, c. 1790

Fig. 6. Iron Palace of King Eyamba V, 1843

Fig. 7. Old Residency, c. 1884

Fig. 8. Billboard for the Nigerian Civil War (Source: Photograph by the author, 2012).
HOUSING
What happens when a study abroad program becomes a social innovation studio? Pedagogical worlds collided and recombined as we travelled to Paris, Calais and Nice, France, to conduct ethnographic research among NGOs serving migrant refugee populations from the Middle East and Northern Africa. Following the closure of La Jungle, Calais’ infamous refugee settlement at the mouth of the Eurostar tunnel, students sought to re-appropriate “design thinking” back into an architectural context, asking first “what is it like to be an international aid volunteer?” then immersing themselves in the work and experience of serving migrant refugees. By week 8 of our 10 week semester, we had formulated a design problem. The resulting project, for a humanitarian aid event based on the typology of a music festival with appurtenant tent-city, is an exploration of architectural and urban precedents for mobile cities, esplanades, portable buildings and mobile infrastructure. The final project, sited on the Ile Saint-Denis in the Seine River in Paris, accommodates 5,000 refugees in 1500 tent sites and over 100 NGO’s who provide an unconditional welcome to refugees and the host city visitors as well. Mobile showers, health and hygiene centers, tea shelters, vulnerable population housing, childcare, technology incubators, a kitchen and a collective bread making area, all grew out of our human-centered research and volunteer experiences in Paris, Calais and the Roya Valley. By emphasizing the front end of architectural design services, from programming and feasibility analysis to logistics and systems thinking, our students were able to experience the value of design in the social impact space. Students came away from this experience understanding that the value proposition of architecture can shift upstream, to a place where questions can still be asked about who we are helping, why and how to do it.
an unconditional welcome for migrant refugees in Paris, France and a capacity building and coordination opportunity for NGO's

What happens when a study abroad program becomes a social innovation studio? Pedagogical worlds collided and re-combined as we travelled to Paris, Calais and Nice, France, to conduct ethnographic research among NGOs serving migrant refugee populations from the Middle East and Northern Africa. Following the closure of La Jungle, Calais' infamous refugee settlement at the mouth of the Eurostar tunnel, we took a page from the Stanford d.school and re-appropriated “design thinking” back into an architectural context, asking first “what is the nature of the problem at hand?” then immersing ourselves in the work and experience of the humans we wanted to serve, in this case, humanitarian aid volunteers. By week 8 of our 10 week semester, we formulated a design problem. The resulting project, for a humanitarian aid event based on the typology of a music festival with appurtenant tent-city, is an exploration of architectural and urban precedents for mobile cities, esplanades, portable buildings and mobile infrastructure. The final project, sited on the île Saint-Denis in the Seine River in Paris, accommodates 5,000 refugees in 1500 tent sites and over 100 NGO's who provide an unconditional welcome to refugees and the host city visitors as well. Mobile showers, health and hygiene centers, tea shelters, vulnerable population housing, childcare, technology incubators a kitchen and a collective bread making area, all grew out of our human-centered research and volunteer experiences in Paris, Calais and the Roya Valley. By emphasizing the front end of architectural design services, from programming and feasibility analysis to logistics and systems thinking, our students were able to experience the value of design in the social impact space.
The RRURBAN Effect

MARCOS PARGA
Syracuse University

WHAT TYPE OF HOME DO WE DESERVE?

Many urbanites would think that it is not too much to ask the new residential architectures to give us the possibility of living in the city with all its density and effervescence, while enjoying some of the advantages of the rural environment. However, our everyday reality invariably shows us the opposite, and that’s why we decided to open up the design process to indeterminacy and participation. The goal is to develop a protocol of action with the aim of replacing the unifying trend of urbanization by operations that exploit diversity and contact with nature.

The RRURBAN replicable strategy (Really RURAL and URBAN) is based on some of the conclusions of a research process that aims to reflect through architecture on a new way of understanding community life in our cities. It can be seen as a possible way to inoculate the benefits of single-family housing in the speculative DNA of collective housing, activating moreover issues related to participatory design.

We came soon to the conclusion that to achieve that kind of hybrid, our strategy should combine two actions on the urban housing typology: hollow out and customize. The former to generate spaces of opportunity (non predefined use) for the final users, and the latter to be able to increase the value of each house and thus compensate economically the decrease of built area. From this point, everything was easier: we must only substitute the unifying tendency of urban construction with operations that exploit diversity. We would then come back to a certain degree of personalization that in turn creates identity and redefines our way of living together.

Besides, this path allows us to explore the limits of participation as already made by John Habraken with his theories about the "open-building" or Frei Otto with his "Ökohaus" many years ago. Recovering the essence of those experiences, in the RRURBAN project we try to work with basic volumes in order to allow each housing unit to be easily adapted by the final users according to their preferences. A realistic “Catalog of wishes” will determine the elementary characteristics of each "urban plot", which will be completely defined when occupying its final position within the general structure.

The result is an inspiring as well as unusual collage of elements, a composition based on fragments representing the collectivity. Faced with the traditional neutral envelopes that give a unique and uniform image of the whole, in this case we can affirm that the facade is a sum of individualities and identities, a form of expression of the desires, aspirations and activity of each inhabitants, exactly what we were looking for.

The first on-going RRURBAN operation will take place in the center of Madrid, occupying a small plot of 4.144,11 sf, enough to house 7 urban plots, all of them with private outdoor space (patio or terrace) and basement parking space.

The common areas (25%) provide the community with a playground, a productive greenhouse, space for barbecues, storage room and bicycle parking.
The **RRURBAN Effect**

The Ethical Imperative

What is the role of architecture in the generation of space? How can we design buildings that reflect our values and beliefs? Architecture is not just about creating physical spaces, but also about shaping the way we live, work, and interact with our environment.

The RRURBAN strategy aims to address the disconnect between urban and rural environments by proposing a new approach to architectural design. This strategy seeks to create hybrid spaces that combine the density and vibrancy of urban areas with the tranquility and connection to nature of rural areas.

What type of home do we deserve?

Many urbanites would think that it is not too much to ask of the new residential architectures to give us the possibility of living in the city with all its density and effervescence, while enjoying some of the advantages of the rural environment. However, our everyday reality inevitably shows us that this is not the case. The goal is to develop a protocol of action with the aim of replacing the unifying trend of urbanization by operations that exploit diversity and contact with nature.

The RRURBAN strategy (Really RURAL and URBAN) is based on some of the conclusions of a research process that aims to reflect through architecture on a new way of understanding community life in our cities. The strategy can be seen as a possible way to inoculate the benefits of single-family housing in the speculative DNA of collective housing, moreover activating issues related to participatory design.

We have concluded that to achieve that kind of hybrid, our strategy should combine two actions on the urban housing typology: hollow out and customize. The former to generate spaces of opportunity (non predefined use) for the final users, and the latter to increase the value of each house and thus compensate economically the decrease of built area. From this point, everything was easier: we must only substitute the unifying tendency of urban construction with operations that exploit diversity. We would then come back to a certain degree of personalization that in turn creates identity and redefines our way of living together.

Besides, this path allows us to explore the limits of participation as already made by John Habraken with his theories about the "open-building" or Frei Otto with his "Ökohaus" many years ago. Recovering the essence of those experiences, in the RRURBAN project we try to work with basic volumes - a cube - that can be adapted according to the needs of the future user, self determining the necessary transformation of each "volume" without any previously defined elements that could restrict the final decision.

The result is an inspiring as well as unusual collage of elements, an expression of the matrix's creativity that no longer requires the same kind of uniformity. The RRURBAN project aims to create a living laboratory of democratic techniques, a living laboratory of new materials, techniques and processes of value transformation, rapidly growing into a new way of thinking and working together.

To test the RRURBAN operation will take place in the center of Madrid, occupying a small plot of 4.144,11 sf (385 m2), enough to house 7 urban plots, all of them with private outdoor space (patio or terrace) and basement parking space.

The common areas (25%) provide the community with a playground, a productive greenhouse, space for barbecues, storage room and bicycle parking.

RRURBAN #01

Madrid

January 2017

Project Data:

City: Madrid

Site area: 4.144,11 sf (385,00 m2)

Dwelling Units: 7

Occupancy: 2.830,91 sf (263,00 m2)

Total floor area: 14.531,28 sf (1.350,00 m2)

Private patios/terraces: 3.724,31 sf (346 m2)

Common Productive Greenhouse: 150,70 sf (14 m2)

Parking Lots: 8 (1 disabled)

Bike Parking Lots: 10

Status: On-going

Configuration #01 (Madrid):

01 Pedestrian and Vehicle Access

02 Parking Ramp

03 Parking + Storerooms

04 Playground + Productive Greenhouse

05 Volume 1: Ground + 1ºA

06 Volume 2: 1ºB + 2ºB

07 Volume 3: 2ºA

08 Volume 4: Penthouse A

09 Volume 5: Penthouse B

BASEMENT: Parking Ground Floor First Floor Second Floor Third Floor Penthouse

CROSS SECTION MAIN ELEVATION

LONGITUDINAL SECTION
Housing is one of the most fundamental elements of urban growth and Hong Kong has for decades hosted some of the most intense living environments on the planet. The city’s urbanization has without a doubt produced unparalleled living conditions in terms of scale and density. As a socio-political microcosm, Hong Kong has been dealing with the impacts of hyper-dense urban environments since the mid-twentieth century. Due to lack of space, topological constraints, historical and political conditions, and the struggle with population density, the city has become an incubator for the development of mass-housing models for high density living. Today, the common approach to housing developments is based on repetitive, reductive and profit driven concepts. Much of the city has been built with endless repetitive canons utilizing formulaic layouts and building designs. For better or worse, rapidly growing cities around the world, especially in China, have followed Hong Kong’s model.

Throughout the 20th Century, in Hong Kong and around the world, the prefabrication of standardized architectural elements enabled builders, governments and developers to increase the scale and pace of construction. This increase in construction efficiency was especially useful in times of need for social housing. During the influx of new residents to Hong Kong in waves throughout the mid-20th Century, new high-rise housing types were invented and built all over Hong Kong, Kowloon and the New Territories. New social housing needed to be built rapidly to safely accommodate thousands of new residents. The housing produced was tall, dense and standardized to house as many residents as possible as quickly as possible. Over the course of the following decades in Hong Kong, the strategy of mass-standardization has shifted from social necessity to the pursuit of profit by private developers.

While the history and architecture of public housing has been well researched and documented, relatively little has been done to trace the evolution of Hong Kong’s private housing estates. It is quite remarkable that in most places in the world, when housing is left to the private sector, the results are diverse. When mass housing is left to the private sector in Hong Kong the resultant architecture has proven to be highly formulaic.

Cities of Repetition provides a comprehensive graphic documentation and analysis of the ten largest Hong Kong housing estates built by private developers from the late 1960’s through the 2000’s. The original drawings and diagrams in this exhibition illustrate the ultra-dense, mass produced, highly repetitive built environments in which hundreds of thousands of Hong Kong residents live. Drawings, photographs and models not only display the immense scale of the housing estates within the city, but present the hundreds of similarly planned housing blocks and their subtle differences. A detailed graphical analysis compares statistical information to show how the planning of these massive estates has evolved over the past decades to efficiently conform to building regulations and produce huge profits. The project reveals the spatial realities of living in some of the most densely populated, urban environments ever built.
CITIES OF REPETITION
Hong Kong's Private Housing Estates

Housing was at the heart of Hong Kong's development, and the city's growth and population expansion have always been driven by the need for affordable housing. The rapid urbanization and population growth have led to the construction of thousands of housing units, primarily in high-rise buildings. These developments have been characterized by a high degree of standardization and repetition, reflecting the city's strategy of mass production. This approach was driven by the need to accommodate thousands of new residents, particularly from the mainland, to Hong Kong in waves throughout the mid-20th century. The resulting architecture has been characterized by density, mass production, and highly repetitive designs, as seen in the prefabricated housing blocks and their subtle variations.

Over the past decades, the housing strategies have evolved to include more diverse approaches. The city has moved towards providing a more balanced mix of housing options, including public rental housing, private sector development, and social housing. The strategy of mass standardization has been refined to accommodate the needs of different groups and provide more affordable options. The city's planning and architecture have been influenced by international trends, with a focus on sustainability and the provision of high-quality living environments.

The city's approach to housing has been shaped by the rapid urbanization and population growth, driven by the need to accommodate thousands of new residents. Over the years, the city has evolved its housing strategy to provide a more balanced mix of housing options, reflecting the changing needs of the population. This evolution has been marked by a focus on sustainability and the provision of high-quality living environments, as seen in the city's planning and architecture.
Twin Peaks: Forging New Collaborations in the Design of Affordable Housing

JULIE LARSEN
Syracuse University

ROGER HUBLEI
Syracuse University

Forging new territory and new collaborations is a constant negotiation in the world of affordable housing. For the City of Syracuse Habitat for Humanity chapter, the common outcome is to take what is donated which can easily lead to sub-par standards of construction. But two years ago, Habitat approached Assistant Professors at Syracuse University to design a single family house with better quality, durable materials and more sustainable construction methods. New collaborations within the community established two Habitat houses as a catalyst for a “Living Classroom,” that brings together architects, engineers, local trades, and volunteers to redefine methods of construction and collaboration for affordable single family housing. We collaborated with the local MCAA chapter (Mason Contractors Association of America), to find new design potential using CMU as the structural material in the two residential homes.

The conceptual goals of the project were based on having to design the house with a combination of CMU and typical stick frame details. The merging of two materials not commonly intertwined in residential construction became a benefit to the design by introducing strategies that negotiate the materials in productive ways. For example, there is ‘fat’ trim negotiating the residential wood windows and the CMU for ease of replacement window installation. Also, Dryvit is applied in colored checkered patterns on the facade to hide future patch work (if it becomes discolored or damaged). Lastly, jigs are used to cut intricate patterns in the hardie board siding to bring a unique quality to a ‘banal’ storage space in the front facade. The paint is applied to create an ombre affect to make the front entry appear taller and bring more prominence to the street facade.
Forging new territory and new collaboration is a constant negotiation in the world of affordable housing. For the City of Syracuse Habitat for Humanity chapter, the common outcome is to take what is donated which can easily lead to sub-par standards of construction. But two years ago, Assistant Professors at Syracuse University approached Habitat to design a single family house with better quality, durable materials, and more sustainable construction methods.

New collaborations within the community established two Habitat houses as a catalyst for a "Living Classroom," bringing together students, professors, local trades, and volunteers to redefine methods of construction and collaboration for affordable single family housing. The merging of two materials not commonly intertwined in residential construction became a benefit to the design by introducing strategies that negotiate the materials in productive ways. For example, there is 'fat' trim negotiating the residential wood windows and the CMU for ease of replacement window installation. Also, Dryvit is applied in colored checkered patterns on the facade to hide future patchwork (if it becomes discolored or damaged). Lastly, jigs are used to cut intricate patterns in the hardie board siding to bring a unique quality to a 'banal' storage space in the front facade. The paint is applied to create an ombre affect to make the front entry appear taller and bring more prominence to the street facade.

The conceptual goals of the project were based on having to design the house with a variety of left-over materials and donated items. The possibilities of how materials were to be used in the final product were not originally foreseen. The buildings are composed entirely of donated materials. This led to the development of a whole new protocol for handling the cut-off and rejected materials.

The collaboration with the local MCAA chapter (Mason Contractors Association of America) led to new design potential using CMU as the structural material in the two residential homes. The conceptual goals of the project were based on having to design the house with a combination of CMU and typical stick frame details. The merging of two materials not commonly intertwined in residential construction became a benefit to the design by introducing strategies that negotiate the materials in productive ways. For example, there is 'fat' trim negotiating the residential wood windows and the CMU for ease of replacement window installation. Also, Dryvit is applied in colored checkered patterns on the facade to hide future patchwork (if it becomes discolored or damaged). Lastly, jigs are used to cut intricate patterns in the hardie board siding to bring a unique quality to a 'banal' storage space in the front facade. The paint is applied to create an ombre affect to make the front entry appear taller and bring more prominence to the street facade.
Behind the Quotidian Screen

ANE GONZALEZ LARA
University of New Mexico

TUCKER DOUGLAS
Schaum Shieh Architects

Behind the Quotidian Screen is our proposition for new contemporary urban development in historic centers; a model for communal and affordable housing; simultaneously it forms a unified urban whole, while sustaining deference to each inhabitant.

To achieve this image, the screen—a taught perforated white metal facade—follows the contours of each parcel. Rising up to five meters in height, the screen differentiates the street from the housing blocks behind. We believe clarity of the form and its logic give a coherence to the surrounding environment. It provides a ready-made image that the residents can own, modify, and take pride in—the screen is their icon.

On the south side of the development, we propose a simple park. Thru the use of different shapes on ground, materials and textures, and play structures, the use of the park is completely indeterminate; rather it serves as a framework—like the screen—for serendipity. Here too, the screen wraps on either side of the park, focusing the view towards the beautiful landscape.

In order to dampen the infiltration of the city from entering the residences, the screen works to negotiate the difference between the purely public and domestic. It allows for a peaceful transition—the screen is a threshold.

The screen baffles the city noise and diffuses the hot Summer sun—creating a series of shared spaces between each of the eight new units and the street. It allows for its own microclimate—the screen conditions outside living space.

Behind the Quotidian Screen reactivates the “in-between” spaces to generate new common areas where the residents can mingle, laugh, play, eat and entertain—this is how communities are formed. Here, you can park your bike, nurture your garden, and teach your child to walk—the screen is like a piece of urban furniture.
Propuesta para la creación de un sistema de control y seguimiento de los accesos.

El sistema propuesto involucra la instalación de un sistema de control de accesos en todas las áreas públicas para monitorear y registrar la entrada y salida de personas. Esta información se utilizará para fines de seguridad y control, garantizando el acceso de personas autorizadas y deteniendo el acceso de aquellos que no están permitidos.

Además, se proponen áreas de recreación y espacios verdes que permitan la convivencia de la comunidad. Estos espacios estarán equipados con mobiliario público y áreas de juegos para los niños. Se prevé la instalación de áreas de descanso con bancos y sombreados para aquellos que deseen disfrutar de la tranquilidad del entorno.

Materiales:

- Materiales estructurales: acero, concreto, vidrio.
- Materiales decorativos: madera, cerámica, textil.
- Materiales de seguridad: candados, alarmas, cámaras de seguridad.

Detalles adicionales:

- La instalación de ventanas con persianas motorizadas para controlar la entrada de luz natural.
- Zonas de almacenamiento con sistemas de seguridad para proteger la propiedad.

El sistema propuesto busca la creación de un ambiente seguro y acogedor, donde todos puedan disfrutar de los espacios públicos de forma segura y controlada.
The project is generated from Corbusier’s Dom-Ino system developed in 1914. With the clear notion that social housing finds in simplicity its biggest asset, Corbusier’s system offers not only this attribute, as it is an open system, where the flexibility of plan distribution and envelope act as main points. The design’s idea is to explore the possibilities of this scheme beyond the established visual of the slab on pilotis, to include in this architectural scenery the continuation of the beam system that extends itself beyond the original structure, forming a grid that predicts not only the restraint—where the structure extends, but also the expansion—how far the resident can go from his initial housing module. A global issue such as social housing does not benefit from a single architectural and urban planning approach since the numerical deficit appears only as a condensed and plausible statistics inside a complex sociological equation. In this sense, the open system appears as a pragmatic answer, but not completely programmed to this question. It is our belief that the popular construction knowledge occupies a significant space in the intricate spectrum of predicates, which compose a “housing proposal” that aims for success in its establishment. Conversely, the concept offers the residents possibilities of customization and future extensions of their units according to their interests, recognizing the future resident as the client that he always was, and in a certain way redefining the architect’s surpassed role as a dictator of the habitat. Thus, housing is no longer seen only as a unit or a set of blocks, but instead, is appreciated as a part of the city, as a form of occupation and contribution to the urban fabric. The house and its surroundings are investments that the residents will appropriate and develop according to their own language, however, respecting the structural grammar provided by the grid. As Rolnik (2016) notes, “our deficit is not only of houses, but also of city”, and inside this motto, the proposal is treated as such; an intervention that is inserted in the urban fabric in order to be incorporated to its reality, and to establish not just houses, but a community.
The Ethical Imperative

The Flex House: Habitat in its essence

The project is generated from Corbusier's Dom-Ino system developed in 1914. With the clear notion that social housing finds in simplicity its biggest asset, Corbusier's system offers not only simplicity, but also the option of flexibility in plan distribution and envelope, as well as in the modules themselves. In this manner, the social housing unit of the future (or the module) is envisaged as an open system, where the flexibility of plan distribution and envelope act as main points. The design is conceived from the inside out, from the scheme beyond the established mass of the slab on pilotis, to include the architectural meaning and the connotation of the volume system that would embody the original structure, forming a grid that produces not only a module, but also the structure itself. In this way, the computer-generated tool for the residents is not only a visual housing module, but also a digital toy that enables them to explore the potential of the scheme beyond the established visual of the slab on pilotis, to include the continuation of the beam system that extends itself beyond the original structure, forming a grid that produces not only a module, but also the structure itself.

The design's idea is to explore the possibilities of this scheme beyond the established visual of the slab on pilotis, to include in this architectural scenery the continuation of the beam system that extends itself beyond the original structure, forming a grid that produces not only a module, but also the structure itself. In this way, the computer-generated tool for the residents is not only a visual housing module, but also a digital toy that enables them to explore the potential of the scheme beyond the established visual of the slab on pilotis, to include the continuation of the beam system that extends itself beyond the original structure, forming a grid that produces not only a module, but also the structure itself. In this way, the computer-generated tool for the residents is not only a visual housing module, but also a digital toy that enables them to explore the potential of the scheme beyond the established visual of the slab on pilotis, to include the continuation of the beam system that extends itself beyond the original structure, forming a grid that produces not only a module, but also the structure itself.

Nevertheless, social housing does not benefit from a single architectural and urban planning approach since the numerical deficit appears only as a condensed and plausible statistic inside a complex sociological equation. In this sense, the open system appears as a pragmatic answer, but not completely programmed to this question. It is our belief that the open construction knowledge occupies a significant space in the current spectrum of possibilities, which compose a "housing proposal" that aims for success in its establishment. Conversely, the concept of the residents' participation and potentiality of customizing their units and buildings, as well as the formal potential of the initial structure, is seen as an opportunity where the future resident, as the client he always was, and in a certain way, is also the designer, where the potential is expressed not only as a vision, but as an actuality.

The square module appears as the protagonist in the grid's individual scale since it has an easy suitability to every orientation and is independent of the site, being the first flexible element of the parti. The structures appear elevated from the natural site, as an adaptation strategy to different topographies. The modulation of 3,00 x 3,00 x 3,00 meters has commercial and low-cost characteristics, encompasses different technologies and travels easily from concrete – elected material for the proposal – to metallic structures or even wood, without the need to change the scaling and the original space organization. This project decision reinforces again the proposal's conceptual versatility, once it allows the valorization of constructive techniques inherent to each location that might use it. Replicated in different directions inside the site, the module evolves into a grid that makes reference not only to the city's heterogeneity but also to the families' diversity.

[Diagram of module flexibility and variations]

An Urban occupation where nature and community unite. Through green corridors, streets, and buildings as the main elements of the proposal, a new block configuration emerges. The buildings are inserted in groups surrounding a central space, where lines of housing modules are placed in the plan to generate a horizontal space composed of grid. The grid is observed in a horizontal line, where the central space is composed of grid.

[A] Grid Occupation

[B] Shared In-Between Spaces

[C] Urban Sustainability

[D] Green Corridor

[E] Parking Options
This project explores the role that methods of land control, land division, and property right agreements play in shaping housing and urban development in Mexico City’s peripheral municipalities. We argue that a typology of housing development has emerged through competing territorial agendas between formal (government sponsored) and informal (sponsored by social organizations) urban expansion. The project maps those housing types in order to understand informal development’s role within Mexico’s attempt to house vast quantities of population as its citizens continue their transition from agrarian land occupation to urban inhabitation. This analysis renders explicit the formal organizations that result from various histories, relationships, and alliances between key actors in housing and urban development processes.

Formal organization in Mexico is largely shaped by practices related to a distinction between ownership and stewardship of communal land, or ejidos. These practices have existed in Mexico since the founding of its first indigenous tribal towns. Historically, rulers have owned their village’s ejidal lands, allowing residents to steward, farm, and use resources from those lands. The village ejido provided most of the village’s collective resources; from wood for fuel, to quarries for building, pastures and stables for animals, and the agricultural lands that provided most of the village’s food. A village’s dependence on the ejido transformed into dependence on the government that provided access to the ejido; so much so that the conquering Aztecs as well as the Spanish colonizers maintained some form of communal lands within the villages they controlled. As corruption and bureaucracy spread throughout Mexico, rulers and municipalities became less effective in protecting and providing collective resources to their citizens. In response to the absence of effective governance, radical social organizations formed promising to fill the needs that the government neglected. Consequently, organizations have claimed swaths of land – often previously ejidos – for peasants and disenfranchised citizens largely ignored by the Mexican government.

We have limited the extents of our study to Chicoloapan; a municipality in which we believe Mexico’s land types and uses, formal organizations, and governments coexist as a microcosm of Mexican urban expansion. Unlike many municipalities adjacent to the Federal District at the tail-end of their transition from agrarian dependency to urban development, the ring of development that includes Chicoloapan is in the middle of this transition. Informal settlements, government subsidized formal settlements, agricultural land, an historical center, an uninhabited forest, and a mountain range all converge within Chicoloapan’s boundaries. The remnants of its ejidos provide a window into its historical patterns of land distribution, organization, and evolution that are consistent with the development of many other municipalities throughout Mexico. Some lands have been developed by social organizations with the primary goal of gaining political control, while others are government subsidized developments that have been driven by the private profits of developers. Each type of urban development in Chicoloapan provides different qualities of infrastructural, residential, and commercial distribution. Collectively, this typology significantly contributes to the form of Mexico’s emergent totalizing urbanity.
The Ethical Imperative

Agriculture to Urbanization in Chicoloapan

The project explores the role that methods of land control, land division, and property rights have played in shaping housing and urban development in Mexico City’s peripheral municipalities. We argue that a typology of housing development has emerged within an intensely political environment with multiple powerful actors and agendas; all of whom are competing for control of Mexico’s citizens as they continue their transition from agrarian to urban inhabitation. The project demonstrates these political relationships and their formal implications through a case study of one such municipality, Chicoloapan de Juárez.

Formal organization in Mexico is largely shaped by the distinction between ownership and stewardship of communal land, or ejidos. Historically, ejidos have served their communities as a source of resources and security. The village ejido provided the village's collective resources; from wood for fuel, to quarries for building, pastures and stables for animals, and agricultural lands that provided most of the village's food. This dependence on the ejido transformed into a dependence on the government providing its access.

In response to corrupt or absent governance, radical social organizations have claimed swaths of land—often previously ejidos—for peasants and other disenfranchised citizens largely ignored by the Mexican government. Some lands have been developed by social organizations with the primary goal of gaining political control, while others are government subsidized developments that have been driven by the private profits of developers. Each type of urban development in Chicoloapan provides different qualities of infrastructural, residential, and commercial distribution.
Post-bubble, many neighborhoods in America, have seen the appraised values of properties decrease markedly, resulting in a sharp lapse in public and private investment. This, combined with stagnant income for many American families, has created an increased demand for rental properties within our urban cores, which has inflated the costs associated with renting. As a result, in areas like Detroit, renters can expect to pay three times more per month than homeowners on housing – a situation that forces families to spend well over half their modest income on housing and leaving precious little for food, heat and other essentials. This serves to further depress housing values in many neighborhoods, making new development unthinkable.

Although unfortunate, this arrangement makes sense. After all, if new homes built using traditional means of construction will cost well over $140 per square foot only to value at less than $55 per square foot upon completion, only those entities who can accept this loss will enter into development. Groups supported by donations and with a mission to help, such as Habitat for Humanity, may develop a few homes, but profit-based entities will not. Nor will banks, which makes home ownership a distant possibility, even for the shrinking cohort of families with enough funds for a down payment.

Two soon-to-be-completed homes question this arrangement. Realized in partnership with local and international citizens, businesses, non-profits, and academic units, these homes leverage the intelligence and efficiency found within various industries (most of which are completely unrelated to housing production) to effectively re-invent the housing delivery process. The process itself is the result of years of research and a growing partnership between students and faculty, builders, real estate agents, appraisers and production centers. The research and resulting work attempts to strategically overlap ancient and emerging techniques of simulation, fabrication, and assembly to make housing production more economically viable, environmentally sustainable, culturally relevant and socially responsive. It is important to note that the process inspired by this effort does not propose a new technology. Rather it strategically overlaps existing techniques and technologies in order to cut in half the time and money associated with housing construction, while increasing the value, in financial, environmental and social terminology. Most importantly, as the techniques utilized rely heavily upon components and approaches attached to digital fabrication, the intelligence earned through these constructions will be immediately embedded into the process, to the benefit of every home produced thereafter. It, like the techniques of industrial production that inspired it, will thus become smarter over time, at a scale and pace currently unthinkable within housing production.
Porter House | Norton House
Reconstructing affordable housing in Pontiac

Realized in partnership with local and international citizens, businesses, non-profits, and academic units, the Porter House and Norton House leverage the intelligence and efficiency found within various industries (most of which are completely unrelated to housing production) to effectively re-invent the housing delivery process. The process itself is the result of years of research and a growing partnership between students, faculty, builders, real estate agents, appraisers, and production centers. This research and resulting work will strategically overlay ancient and emerging techniques of simulation, fabrication, and assembly to make housing production more economically viable, environmentally sustainable, culturally relevant, and socially responsive. Current appraisals indicate that these homes will cut in nearly half the time, money, and environmental resources embedded in similar homes, while raising the appraised value significantly. The construction of both houses will be complete in the Summer of 2018.
Home in Common: Decentralizing Domesticity

LORINC VASS
University of British Columbia

NICOLE SYLVIA
University of British Columbia

ROY C CLOUTIER
University of British Columbia

As the homeownership models that sustained previous generations slip further out of reach, more and more people are left in a precarious relationship with domestic space—locked out by the shifting tides of the housing market. Vancouver, Canada is a case in point: repeatedly touted as among the world’s most ‘liveable’ cities, it is paradoxically also one of the most unaffordable for owning a home. Its housing remedies rely on conservative, nostalgic models of ownership—in turn largely failing to impact the interrelated problems of scarcity, homogeneity and unaffordability. Rather, the very nature and meaning of ‘home’ itself needs a more fundamental remodeling: from homes in isolation to Home in Common.

Amidst Vancouver’s stifling monoculture of condominiums and single-family homes, a diverse ecology of living sprouts forth from the interstices of the formal city. Its laneways, overlooked zones of infrastructure, transform into a shared network of domestic activities, where mundane rituals acquire new collective roles. Instead of nostalgically recreating older modes of living, this sharing network embodies an optimistic vision of a future—one where fluidity and impermanence are not bemoaned but rather harnessed, fuelling openness, vitality, and new forms of collectivity.

In place of the static ownership of a singular domestic space, Home’s constituent components are unbundled and distributed within the city, allowing them to be held communally. Alongside the singular rooms of apartments and houses, an evolving network of shared spaces hosts a multiplicity of activities impossible in isolation. No longer a hermetic site of solitary life, domestic space proliferates throughout the city as a field of experimentation, where collective sociability is continually formed through mundane rituals. By rethinking Home not only as a space but also as a process, a new city emerges. Urban space is claimed as an act of exchange and sharing: the city becomes a Home in Common.

Operating not only as a speculative design project but also an investigation into potential formats for architectural research and activism, the project points toward one alternative role for architectural knowledge in the production of the city. Rather than merely reacting to the status quo—dominated by restrictive building regulations and ‘developer-turned-visionaries’—architects must rise to the challenge of synthesizing aesthetic capability and ethical responsibility to imagine and draw alternative possibilities. Doing so holds the potential to open for architecture an expanded realm of ethical engagement—and in turn, a path toward a more convivial city.
As the homeownership models that sustained previous generations slip further out of reach, more and more people are left in a precarious relationship with domestic space—locked out by the shifting tides of the housing market. Vancouver, Canada is a case in point, repeatedly named as one of the world’s most liveable cities, it is paradoxically also one of the most unaffordable for owning a home. Its housing remedies rely on conservative, nostalgic models of ownership—in turn largely failing to impact the interrelated problems of scarcity, homogeneity, and unaffordability. Rather, the very nature and meaning of ‘home’ itself needs a more fundamental remodeling, from homes to a common Home in Common.

Amidst Vancouver’s stifling monoculture of condominiums and single-family homes, a diverse ecology of living spaces sprouts forth from the interstices of the formal city. Its laneways, overlooked zones of infrastructure, transform into a shared network of domestic activities, where mundane tasks acquire new collective roles. Instead of nostalgically recreating older modes of living, this sharing network embodies an optimistic vision of a future—one where fluidity and impermanence are harnessed, fuelling openness, vitality, and new forms of collectivity.

In place of the static ownership of singular domestic spaces, Home’s constituent components are unbundled and distributed within the city, allowing them to be shared communally. Alongside the singular rooms of apartments and houses, an evolving network of shared spaces hosts a multiplicity of activities impossible in isolation. No longer a hermetic site of solitary life, domestic space proliferates throughout the city as a field of experimentation, where collective sociability is continually formed through everyday rituals. By rethinking Home not only as a private but also as a public project, it is a way to engage Urban space as a site of exchange and sharing, the city becomes a Home in Common.

Operating not only as a speculative design project but also as an investigation into potential formats for architectural research and activism, the project presents new democratic roles for architectural knowledge in the production of the city. Rather than merely reacting to the same space, the project constructs building regulations and design for everyday domestic activities to reflect the fluidity of everyday life—its spatial, social, and temporal qualities. By synthesizing aesthetic capability and ethical responsibility in a new role for architectural knowledge, the project seeks to open for architecture an expanded realm of ethical engagement—and in turn, a path toward a more convivial city.
MATERIALS
Flexible Landscape —— An Urban Natural Installation

ZHOU XUDONG
Tongji University (Shanghai, China)

During the period of August 21st to September 10th in 2015, there was a series of public cultural activities named “Gravitational Field—interconnections between architecture and public culture” held in the Jing’an Temple Square, which is the most prosperous place in Shanghai. One both artistic and practical architectural installation called Flexible Landscape was created, which was designed by Wang Yan, Zhu Xudong, Huang Weile and Wang Yibo.

Jing’an Temple Square is relatively 7 meters lower than West Nanjing Road. The installation was understood to be a set of open landscape at this site. It emerged to the site naturally with its soft and exquisite profile, resembling a bonsai of the city. The different levels that the two arc-shaped ridges sat ingeniously corresponded to the open stage and the crowded metro exit, as if it was the mountains in a basin.

Due to the fact that the stone material of the ground at the site did not allow any damages, the entire installation could not have any basis or ground fixation. However, considering the possible damages a powerful typhoon could cause, 50 pieces of 20-meter long streamline wooden bamboo frames were eventually adopted to create a fluctuating structure. It not only emitted a visual effect of an abstract landscape, the installation was at the same time fulfilled with the spirit of the times.

The temperature was at a scorching point in August in Shanghai. This “arc-mountain” provided space for abundant public activities in the square with two shady areas. The mist sprays that were hidden in the gaps of the frames continued to cool the square. Meanwhile, mist-shrouded scene enhanced the visual impression of this urban landscape bonsai. A rainbow can be occasionally seen on top of the installation under the sunshine, making the entire atmosphere light and more relaxing for the general public.

In terms of the material used in the installation, wooden bamboo was chosen as the main structural element. Bamboo is a plant that has many characteristics related to China, hence is very much loved by Chinese people. Wooden bamboo is made of advanced fibers through hot gluing technology. It has the characteristics of high strength and high density, at the same time making people feel more natural and intimate, as well as having a sense of cultural belonging.

The installation itself was a work of art, as well as a space for various activities. A series of public events were carried out in this “Landscape Bonsai” one after another. It not only was an experimental field, but also a theater, an exhibition, a market, a playground and so much more. It inspired the vitality and creativity of the city at the time, displaying an open spirit that Shanghai has through an architectural way.
SWELL: Structural Experiments with Heat Moldable Plywood

BEVERLY CHOE
Stanford University

JUN SATO
University Affiliation

SWELL was an experimental installation completed in the spring of 2018. In this “Responsive Structures” Design Build course, students investigated the structural, spatial and organizational capacities of a heat-moldable plywood product manufactured in Finland. The course advanced a structures-based approach to material investigation. Reversing the prevalent use of plywood as cladding fastened to framing elements, students were challenged to develop a habitable, self-supporting system using only plywood.

Heat-formable plywood:
Thermoformable plywood is made from layers of FSC certified cross laminated birch veneers. Birch, known for its high strength and stability, is layered and adhered with a non-formaldehyde engineered adhesive that can soften with heat, and reset when cooled multiple times if necessary. Students used a 3-layer panel with a 4.5 mm thickness.

Structure:
Students developed a triangular, notched panel unit through model-based structural experimentation. The structural capacities of the plywood were tested through different curvatures and configurations.

Students learned how surface deformation (through parabolic curvature) increased the buckling strength of the panel by 2.7 times. They began with an idea for a 6-panel module based on a hexagon, which evolved in a more stable, interlocked 4-panel modules which became the building block for interlocked “mega-modules” that organize the structure. The non-parallel orientation of each of the pairs of panels further stabilized the module. Students stacked and offset these mega-modules into a structurally sound yet spatially rich matrix to construct the installation.

Fabrication:
The course merged both digital and manual techniques for the panel production and assembly. After students refined the panel design, they cut 600 identical panels on the CNC router, and fabricated a two-part mold using laminated MDF sheets. Panels were then placed in an oven set to approximately 95 degrees. Baking the panels for about 2.5 minutes softened the glue enough so that the veneer layers could slide and deform within the mold. Students experimented with different temperatures and baking times to determine the optimal results, refining their production technique with multiple prototypes. Once baked, the malleable panels were individually pressed and cooled within the heavy mold to produce their curvature.

The final form of “SWELL” was inspired by the wave-like forms of blowing leaves within the tree-lined site, interspersed with pink and purple-colored “blooms” held aloft within the structure. The undulating, porous space emerges from the ground, creating a habitable passage and view from the main path to the museum. Some of the panels were perforated with a leaf-like pattern, creating varied densities and a nuanced filtered light, while also reducing the wind load on the structure.
SWELL was an experimental installation completed in the spring of 2017. In the W 행복적: Structural Design Build course, students investigated the structural, spatial, organizational, and poetic capacities of a single, bent-membrane Plexiglas product manufactured in Italy. The course was a cross-disciplinary collaboration including students from the Architectural Design, Structural, and Materials Engineering departments. The form of "SWELL" also varied by the use of form and color. The building, made of custom forms and colored "blades," was exposed to the elements. The undulating space emerged from the ground, creating a habitable passage and view from the main path to the museum.
LIMB reconsiders historic heavy timber construction across cultures to develop new joinery methods by focusing on the natural occurrence of branch bifurcation in different wood species. Because of its low value, often the crotch of a tree is not harvested for commercial purposes. This project uses this vital element to design connections that replace traditional mortise and tenon or steel connections.

By replacing the joint with a single piece of wood that purposely grew for bifurcation in nature and moving the structural connection away from where vertical and horizontal members come together a stronger construction joint can be achieved. Beyond the reduction of waste and added value, this project has the following architectural ramifications:

1. Overall architectural design parameters relate to the natural angles of certain bifurcations. These restrictions have provocative formal implications.

2. A structural system that is scalable, from major tree bifurcations at the base suitable for larger buildings, to smaller bifurcations adaptable to furniture.

3. New ways of connecting linear timber elements are developed beyond the “crotch” where cross-cultural scarf connections are revisited using digital fabrication.

4. Different wood species sharing common structural capacities allow for cross-specie “crotches” as long as they share similar overall properties.

Traveling through the Mid-Western landscape one often encounters weathered barns framed by expansive sky. These structures from a bygone time bear little resemblance to today’s industrialized agrarian landscape. Much like the concrete silos that inspired Corbusier’s modernist vision these wooden structures preserve the vestiges of a refined and pragmatic wide span building system developed through intimate knowledge of local materials and handcraft accumulated through generations of trial and error.

In the 17th century tree crotches were harvested for a variety of purposes from bracket systems in barn structures to structural joints in the construction of navy vessels (Encyclopédie Méthodique: Marine). In the 1960’s renown modern furniture designers such as Sam Maloof replaced two part mortise and tenon joints in their chairs with a singular bifurcated piece increasing connection strength and producing more sinuous form. More recently Whole Trees Architecture and Architectural Association program directors Martin Self and Emmanuel Vercruysse explore organic form aggregation using entire tree branches with bifurcations.

Our research sets itself apart by assuming a syntactical approach to design. We are not interested in unique form generation based on unique parts, something that is very well explored in the realm of digital fabrication, rather are constructing a reusable language of bifurcated joinery. There are a number of common natural angular occurrences in limb bifurcations and we have reduced those to a set of parts that can be “tuned” to develop diverse structural systems. The two types of crotches identified are: the “r” and “y” type. We have designed a digital fabrication workflow that extracts standardized milled parts from an inventory of salvaged material. The cataloguing of recurring angles and other physical properties inherent to different species of trees allows for further development of the structural possibilities of this system, which can be applied to nearly any type of tree bifurcation allowing for infinite combinations within the language of bifurcated timber joinery.

By elaborating on the natural occurrence of tree bifurcation as a tectonic element using contemporary digital practices and combining different wood species and diverse cultural traditions to propose new timber construction systems. LIMB is simultaneously global and regional in its approach.
LIMB

Sunken historic heavy timber construction alternate columns to develop new joints methodically leveraging the natural occurrence of branch bifurcations in different wood species. Designing within the proportions, when the crotch is too wide to be harvested for commercial purposes, this project uses this natural behavior to design connections that reflect both natural and man made structural constraints.

By reimagining the joint with a single piece of wood that purposely grew for bifurcation in nature and optimizing the structural connection using these natural and artificial connections create unique strategies combining joint flare and shared. Beyond the reduction of waste and added value, this project has the following architectural ramifications:

1. Overall architectural design parameters relate to the natural angles of certain bifurcations.
2. A structural system that is scalable, from mega tree dimensions to the base suitable for larger buildings, to enable efficient connection adaptable to terrain.
3. The range of existing heavy timber joinery are developed beyond the “crotch” where conventional cut connections are rendered obsolete.
4. Different wood species during classic structural operations allow for cross species “extensions” as long as they share similar visual properties.

1. NEST STRUCTURE
 - A structural component that represents branches which are connected directly to each other and to an orthogonal surface panel system to form an inhabitable space. Snake in opposition of nature, with the application of these methods, two nest structures may exist as one.

2. TRIANGULATED COLUMN
 - A larger structural element that mimics the joints that comprise the strength of the column is provided triangulation of the members, and the environmentally friendly wood structure allows for visualization. This system can be adapted to scale of terrain.

3. TRUSS PORTAL
 - An arch-like support which can support multiple arches and create enclosed space bubbles. Triangulated and optimized wood systems allow for relatively lightweight wooden structures.

4. HEX DOME
 - The dome is a structural system that represents a configuration which can be formed by joining elements that mimic the natural behavior of the structure. The dome is a hexagonal organic dome with a unique curvature needed. As a variant of the geodesic dome composed entirely from natural materials and optimized parametrically, the hex dome has potential.

Given the range of bifurcation angles in the inventory of common natural occurring bifurcations and the extensive research done in the last 30 years of naval vessels (Encyclopédie Méthodique: Marine). In the 1960’s renowned modernist furniture designers such as Sam Maloof replaced two-part mortise and tenon joints in their chairs with a singular bifurcated piece increasing connection strength and producing more sinuous form. More recently Whole Trees Architecture and Architectural Association program directors Martin Hellmuth and Emmanuel Vercruysse explore organic form aggregation using entire tree structures preserve the vestiges of a refined and pragmatic wide span building system developed through intimate knowledge of local materials and handcraft accumulated through generations of trial and error.

Architecture and Architectural Association program directors Martin Self and Emmanuel Vercruysse explore organic form aggregation using entire tree structures. The two types of crotches identified are: the “r” and “y” type. We have designed a digital fabrication workflow that extracts standardized milled joints, which can be used for further development of the structural possibilities of this system, which can be applied to nearly any type of bifurcation allowing for infinite combinations within the language of bifurcated timber joinery.

LIMB develops four structural systems that leverage the “r” and “y” crotch connection:

1. Nest Structure: Spatially optimized parametric branching event system for inhabitable space
2. Triangulated Column: Three-way columnar structure
3. Triangulated Column: Three-way columnar structure
4. Truss Portal: Two-way triangulated frame reminiscent of the traditional timber framing

By reimagining as the natural occurrence of two bifurcations as a structural element using contemporary digital practices and combining different wood species and diverse cultural traditions to propose new timber construction systems. LIMB is simultaneously global and regional in its approach.
The project was developed in collaboration between Syracuse University Assistant Professors Roger Hubeli and Julie Larsen, and CEMEX GLOBAL R&D.

At the Fundamentals exhibition of the 2014 Venice Biennale, Rem Koolhaas referred to the ceiling and stated that it was “a domain over which architects have lost all control, a zone surrendered to other professions”. And that “our influence has been reduced to a territory that is just 2cm thick.”

In response to this provocation, THINNESS pavilion offers new insights into the future architectural potentials of concrete technology as a lightweight material. The design and fabrication of the 10’x10’x10’ pavilion consists of 16 mobile elements that hybridize veneer and structure to create a new approach to being ‘thin’ with only two centimeters of wall material thickness throughout. With the use of high-performance, lightweight concrete, the project generates a new perception of concrete through its structure, skin and surface quality. To alter the perception of concrete as a thick poche, thin, hollow and perforated ‘columns’ comprise the structure. This tension of a thin veneer and a volumetric poche expresses a design ambition beyond a material’s logic that questions preconceived ideas of concrete. The pattern on the facade was generated from a grasshopper script that responds to the overlapped stress and load patterns for the horizontal and vertical position of the element when they are moved.

Because the fiber reinforced mixture of the concrete has the capacity to allow for extremely thin casts, the elements were made with only two centimeter thick walls “shells”. Without traditional steel but fiber reinforcement, this is an achievement because of each column’s ability to maintain high structural strength despite the high bending stresses, due to buckling, in the thin cross-section of the walls. This is in stark contrast to more common, thin form-active structural shells, where no bending occurs due to load distribution along the curve of the forms. These forms, however, do not lend themselves to be stacked. But due to the structural strength of the high strength concrete used for the pavilion, can we design vertical structures with only two centimeters. The high performance concrete is able to reduce the structure to extremely thin, vertical 2CM surfaces to create hollowed-out column elements that would otherwise not be achievable with traditional concrete. The pavilion defines new, counterfactual arguments for the material of concrete in order to change base assumptions and question the parameters for the material. Therefore, we ultimately question the status quo of architectural production (such as concrete needs 28 days for curing, it must have steel reinforcement, etc.). If the common characteristics of a material are not questioned, then perceptions of a material will inevitably keep us at ‘two centimeters’.
The Ethical Imperative

The project was developed in collaboration between Syracuse University Assistant Professors Roger Hubeli and Julie Larsen, and CEMEX GLOBAL R&D.

At the Fundamentals exhibition of the 2014 Venice Biennale, Rem Koolhaas referred to the ceiling and stated that it was “a domain over which architects have lost all control, a zone surrendered to other professions”. And that “our influence has been reduced to a territory that is just 2cm thick.”

In response to this provocation, THINNESS pavilion offers new insights into the future architectural potentials of concrete technology as a lightweight material. The design and fabrication of the 10’x10’x10’ pavilion consists of 16 mobile elements that hybridize veneer and structure to create a new approach to being ‘thin’ with only two centimeters of wall material thickness throughout. With the use of high-performance, lightweight concrete, the project generates a new perception of concrete through its structure, skin and surface quality. To alter the perception of concrete as a thick poche, thin, hollow and perforated ‘columns’ comprise the structure. This tension of a thin veneer and a volumetric poche expresses a design ambition beyond a material’s logic that questions preconceived ideas of concrete. The pattern on the facade was generated from a grasshopper script that responds to the overlapped stress and load patterns for the horizontal and vertical position of the element when they are moved. Because the fiber reinforced mixture of the concrete has the capacity to allow for extremely thin casts, the elements were made with only two centimeter thick walls—shells. Without traditional steel but fiber reinforcement, this is an achievement because of each column’s ability to maintain high structural strength despite the high bending stresses, due to buckling, in the thin cross-section of the walls. This is in stark contrast to more common, thin form-active structural shells, where no bending occurs due to load distribution along the curve of the forms. These forms, however, do not lend themselves to be stacked. But due to the structural strength of the high strength-concrete used for the pavilion, can we design vertical structures with only two centimeters. The high performance concrete is able to reduce the structure to extremely thin, vertical 2CM surfaces to create hollowed-out column elements that would otherwise not be achievable with traditional concrete. The pavilion defines new, counterfactual arguments for the material of concrete in order to change base assumptions and question the parameters for the material. Therefore, we ultimately question the status quo of architectural production (such as concrete needs 28 days for curing, it must have steel reinforcement, etc.). If the common characteristics of a material are not questioned, perceptions of a material will inevitably keep us at ‘two centimeters’.
Reassembly brings together material fragments that have prior values, uses, and histories, into new architectural forms. As a strategy for material reuse at the scale of building, reassembly cultivates a visual and material aesthetic through the unresolved relationship of parts to whole.

Clastic Order is a series of free-standing columns made by combining reclaimed construction debris with post-industrial plastic waste. Produced for the Designing Material Innovation exhibition at the California College of the Arts, the columns are the first full-scale demonstration of our ongoing research on the strategies and aesthetics of reassembly.

The geological term “clastic” describes a type of stone made of older rock fragments, or clasts. Here, familiar fragments of buildings (brick, concrete, glass, pipes, and fittings) are the clasts which mottle the stone-like surface of the columns. Each column is monolithic, fabricated as a continuous cast with a process similar to slip-forming concrete a technique used to cast uninterrupted structures such as building cores, shear walls, and silos. Each column cast begins on the ground in an insulated mold filled with loose material. The plastic is brought to its melting point at which time it binds the inorganic aggregates into a solid mass. The heat sources and formwork are gradually raised as each section is completed, producing continuous full-scale columns.

While the classical orders of architecture established mathematical rules of proportion, spacing, and sequence of parts, Clastic Order suggests an approach to design based on material behavior under heat and gravity. By varying the ratios of components in the mixture and the application of heat, a range of colors, textures, and effects is produced across the columns. Since the waste plastics and building debris can be reclaimed locally, the material properties of the resulting casts reflect the composition of regional waste streams.
Clastic Order

Clastic Order is a series of free-standing columns made by combining reclaimed construction debris with post-industrial plastic waste.

Reassembly brings together material fragments that have prior values, uses, and histories, into new architectural forms. As a strategy for material reuse at the scale of building, reassembly cultivates a visual and material aesthetic through the unresolved relationship of parts to whole.

The geological term clastic describes a type of stone made of clifer rock fragments, or clasts. Here, familiar fragments of buildings (brick, concrete, glass, pipes, and fittings) are the clasts which mottle the stone-like surface of the columns. Each column is monolithic, fabricated as a continuous cast with a process similar to slip-forming concrete—a technique used to cast uninterrupted structures such as building cores, shear walls, and silos. Each column cast begins on the ground in an insulated mold filled with loose material. The plastic is brought to its melting point at which time it bonds the inorganic aggregates into a solid mass. The heat sources and formwork are gradually raised as each section is completed, producing continuous full-scale columns. While the classical orders of architecture established mathematical rules of proportion, spacing, and sequence of parts, Clastic Order suggests an approach in design based on material behavior under heat and gravity. By varying the ratios of components in the mixture and the application of heat, a range of colors, textures, and effects is produced across the columns. Since the waste plastics and building debris can be reclaimed locally, the material properties of the resulting casts reflect the composition of regional waste streams.

This project was produced for the Designing Material Innovation exhibition at the California College of the Arts.
Speculative Sandstone is an investigation into how architectural order can be reoriented to the forces that act both in and on it—the many agencies, human and nonhuman, animate and inanimate, from which it is assembled. Through such a reorientation, architecture might learn to tap into a surprising generative potential—selectively ceding certain aspects of authorial control to gain in return both an extended reach and a lightened touch.

Taking the form of a speculative geo-story spanning a wide range of scales, the project pairs material investigation—experimental, ad-hoc methods for printing microbially-cemented bio-sandstone—with territorial extrapolation, testing these emergent material techniques against the climate-change-wracked landscapes of the future Great Plains. Warming due to climate change, the dunes of the Nebraska Sandhills will soon lose their protective layer of grass and go mobile, ceaselessly whipped into new forms by the intense winds of the region. The many ranchers, scientists, ecotourists, cattle, and rare species that depend on the stability of the region will be violently uprooted, with any form of static dwelling made nearly impossible by the shifting dunes. However, rather than try to stop the dunes, the project finds ways to work within the logics of the moving dune field—harnessing them to allow inhabitation where none could otherwise exist.

Manipulating the materials abundant in the region—sand, urea distilled from cow urine, and bacteria—a fleet of bio-sandstone printing devices are deployed to architecturally shelter and enlarge the oasis-like lowland marshes that temporarily exist in the lee of large barchan dunes. As blowing sand builds up against pods with sand fences stretched between them, adapted pivot-irrigation mechanisms disperse the urea-water-bacteria slurry to inoculate the sand, building it up and compacting it in layers—essentially 3d-printing a deep, structural buttress against the shifting dunes. The form, while seemingly quite willful, results directly from a series of simple interactions—the placement of pods, blowing of sand, bulging of sand-fences, and radii of pivot-printers. Its form is both found and made.

Having successfully shunted the dune aside, the bio-sandstone printers are able to roam onward to stabilize new grassland oases. The sandstone walls they leave behind continue to both shelter the oases and host new populations of devices and units, in time coming to support a robust agro- and eco-tourism system. Amidst the shifting landscape, metastable islands flourish for a time, then fade—their human- and non-human inhabitants moving on, tracking opportunity, transforming their context as they roam.

In one sense, the project is a call for material exploration to always parallel a focus on development with one on deployment. For architects, such a shift in focus opens new potentials for ethical engagement in that it directs attention to the collectives that any technology or project draws together—the messy and chaotic collection of people, animals, machines, climatic patterns, cultural beliefs, and more from which new forms of life are constructed. Such a shift calls on architects to learn to act amid, rather than atop, a lively field of subjects—in return promising a more deft and nimble touch.
SPECULATIVE SANDSTONE
OR, TOWARD FORM BOTH FOUND AND MADE

Speculative Sandstone is an investigation into how architectural order can be reoriented to the forces that act both in and on it—the many agencies, human and nonhuman, animate and inanimate, from which it is assembled. Through such a reorientation, architecture might learn to tap into a surprising generative potential—selectively ceding certain aspects of authorial control to gain in return both an extended reach and a lighter touch.

Taking the form of a speculative geo-story spanning a wide range of scales, the project pairs material investigation—experimental, ad-hoc methods for printing microbially-cemented bio-sandstone—with territorial extrapolation, testing these emergent material techniques against the climate-change-wracked landscapes of the future Great Plains. Warming due to climate change, the dunes of the Nebraska Sandhills will soon lose their protective layer of grass and go mobile, violently uprooting the many ranchers, scientists, ecotourists, cattle, and rare species that depend on the stability of the region. However, rather than try to stop the dunes, the project finds ways to work within the logics of the moving dune field—harnessing them to allow inhabitation where none could otherwise exist.

Manipulating the materials abundant in the area, the project deploys a fleet of bio-sandstone printing devices to architecturally shelter and enlarge the oasis-like lowland marshes that temporarily exist in the lee of large barchan dunes. As blowing sand builds up against pods with sand fences stretched between them, adapted pivot-irrigation mechanisms disperse the urea-water-bacteria slurry to inoculate the sand, building it up and compacting it in layers—essentially 3D-printing a deep, structural buttress against the shifting dunes. The form, while seemingly quite willful, results directly from a series of simple interactions—the placement of pods, blowing of sand, bulging of sand-fences, and radii of pivot-printers. It’s both found and made.

Having successfully shunted the dune aside, the bio-sandstone printers are able to roam onward to stabilize new grassland oases. The sandstone walls they leave behind continue to both shelter the oases and host new populations of devices and units, in time coming to support a robust agro- and eco-tourism system. Amidst the shifting landscape, metastable islands flourish for a time, then fade—their human- and non-human inhabitants moving on, tracking opportunity, transforming their context as they roam.

In one sense, the project is a call for material exploration to design parallel to new on development with an eye on deployment. For architects, such a shift in focus opens new potentials for ethical engagement in that it directs attention to the collectives that any technology or project draws together—the messy and chaotic collection of people, animals, machines, climatic patterns, cultural beliefs, and more from which new forms of life are constructed. Such a shift calls on architects to act amid, rather than atop, a lively field of subjects—in return promising a more deft and nimble touch.
Uncertain Material Engagements

JAMES C. FORREN
Dalhousie University

Material Engagement Theory frames materials as extensions of human intelligence and active participants in social exchange (Malafouris & Renfrew 2010; Hodder 2013). This socialization prompts questions of ethical material engagement: as equal participants, what are material’s ‘rights and responsibilities’? How might they facilitate ethical social exchange? The contemporary production of architectural components and assemblies requires an ethics of scale where energy is conserved, the social imagination is stimulated, and context is pre- eminent.

Eva Diaz in the Experimenters (2015) cites Josef Albers’s pedagogical experiments with intrinsic and extrinsic material properties as cultivating an ethic of perception. Through actions of close looking and the suspension of preconceptions students were expected to foster enlightened perceptions of cultural and social exchange. Tim Ingold’s Making (2013), rooted in the Deleuzian schema of ‘morphogenesis,’ engages a related project, extending it to a time-based model of material engagement. Pedagogical encounters under his guidance embrace the intrinsic uncertainty of material behavior over time: such as describing a penny not just as an embossed copper disc, but a metallurgical event founded in ores, imbued with energies, and subject to transformations wrought by environment and human mis-use.

The work presented here, from an introductory digital design and fabrication seminar, blurs the lines between computational certainty and material uncertainty. The tactility of materials grounds the learning of computational methods while their uncertainty enriches this learning with an experience of complex digital-analog relationships. In this process “computation” becomes more than a tool to realize form, it becomes a way to think about and orchestrate networks of activities.

The rubric of material engagement challenges students to design and evaluate material encounters which inform algorithmic patterns of computational design and fabrication. Released from preconceived form, by looking at tools and methods they take on thinking while making: allowing knowledge discovered during the process to inform its development they discover it through experimentation. By working through intrinsic properties students develop solutions which are novel, efficacious, and adaptive. Because the experiments are rooted in intrinsic properties their outcomes have a high degree of efficacy, foregoing energy typically wasted working against what a material ‘wants’ to do. As the tests are algorithmic – establishing frameworks of constants and variables – they can adapt to various contexts and conditions.

This process teaches students to listen to materials and observe their ‘rights.’ Students learn the steps in designing a process, as opposed to an object, and thus, understand their ability to intervene in larger processes of manufacturing and material production. This ultimately provides alternative models for thinking about built form not as a projected image, but as the outcome of a carefully choreographed set of relationships in space and time: a confluence of human activity, material performance, and environmental forces rather than a preconceived idea.
Material Engagement Theory frames materials as extensions of human intelligence and active participants in social exchange (Malafouris & Renfrew 2010; Hodder 2013). This socialization prompts questions of ethical material engagement: as equal participants, what are material’s ‘rights and responsibilities’? How might they facilitate ethical social exchange? The contemporary production of architectural components and assemblies requires an ethics of scale where energy is conserved, the social imagination is stimulated, and context is pre-eminent.

Eva Diazo in The Experimenters (2015) cites Josef Albers’s pedagogical experiments with intrinsic and extrinsic material properties as cultivating an ethic of perception. Through actions of close looking and the suspension of preconceptions students were expected to foster enlightened perceptions of cultural and social exchange. Tim Ingold’s Making (2013), rooted in the Deleuzian schema of ‘morphogenesis,’ engages a related project, extending it to a time-based model of material engagement. Pedagogical encounters under his guidance embrace the intrinsic uncertainty of material behavior over time: such as describing a penny not just as an embossed copper disc, but a metallurgical event founded in ores, imbued with energies, and subject to transformations wrought by environment and human mi-vis.

The work presented here, from an introductory digital design and fabrication seminar, blurs the lines between computational certainty and material uncertainty. The tactility of materials grounds the learning of computational methods while their uncertainty enriches this learning with an experience of complex digital-analog relationships. In this process “computational” becomes more than a tool to realize form; it becomes a way to think about and orchestrate networks of activities.

The rubric of material engagement challenges students to design and evaluate material and computational design and fabrication – released from preconceived form – by learning at the tools and methods they take on thinking while making. Through working through intrinsic properties students develop solutions which are novel, efficacious, and adaptive. Because the outcomes are rooted in intrinsic properties their efficacy is high, overpowering energy typically wasted working against what a material ‘wants’ to do. As the tests are algorithmic – establishing a framework of constants and variables – they can adapt to various contexts and conditions. This process teaches students to listen to materials and assume their rights. Students learn from the intrinsic properties of material behavior over time and thus, understand their ability to intervene in larger processes of manufacturing and material production. This ultimately produces alternative models for thinking about built form and thus a practice of a carefully choreographed set of interdependencies in space and time a confluence of human activity, material performance, and environmental forces rather than a preconceived idea.
A New Robotic Brutalism: Additive Architectural Elements

LESLIE LOK
Cornell University

SASA ZIVKOVIC
Cornell University

The 3D printer, a machine which has long been characterized as characterless due to having little to no constraints, is in fact highly distinctive. The Additive Architectural Elements project aims to reveal the 3D printer’s own and highly idiosyncratic architectural tectonics and narratives. Choosing commonplace prototypical architectural motifs such as floors, columns, doors, windows, walls, and ceilings we developed strategies as to how the layering of concrete, the relentless three-dimensional drawing of extruded lines of material, and the act of corbelling can suggest new strategies for building. Our question is: what is the architecture of 3D printed concrete?

Per visual and material association, we became interested in the architecture of Brutalism, borrowing and advancing formal and material strategies developed during this period. For us, Brutalism is most intriguing when bottom-up material processes meet top-down expressive decisions made by the architect: when a symbiosis between material and method of construction facilitates specific architectural characteristics such as fluidity, cantilevers, and texture, as well as accommodates the architect’s willful design expression in the overall building assembly. In many of the great brutalist buildings, this oscillation is expressively present, hence our interest in that time period. In both our research and practice we aim to bring about and introduce such balance to new processes of making.

The A New Robotic Brutalism – Additive Architectural Elements project investigates prototypical methods for 3D printing at the building component scale in ground-up layered assemblies. Rather than further focusing on the technical advancement of 3D printing technology, this project operates consciously within the status-quo, researching a paradigm-shift that has already occurred but never fully and consequentially been explored architecturally: the 3D printing of buildings with concrete. In a 3D printed structure, all common architectural motifs and building components must be re-thought to fit the logic of layered construction. For example, a concrete printer cannot print in midair; therefore, the otherwise simple exercise of making a rectilinear window opening becomes de facto an impossibility. Rather than drastically altering the process (stopping the machine to insert a beam), we believe that shortcomings become opportunities for design: as the printer can incrementally cantilever, one possible logical consequence is for the window to become a triangular corbelled arch. Seemingly advanced technology unexpectedly enables narratives that connect to obsolete or archaic structural strategies such as corbelling. Other strategies deployed in the manipulation of form are the modification of printing direction to overcome printer deficiencies, g-code manipulation for smart material deposit, or alterations of geometries for structural reasons related to the fabrication process.

In a series of seven full-scale 3D printed concrete prototypes, forty-nine 3D printed PLA models, seven proto-architectures 3D printed from PLA, ninety-eight element drawings, and one hundred-ninety-six photographs, the A New Robotic Brutalism – Additive Architectural Elements project explores the architecture of 3D printed concrete within Mushroom Columns, Force Columns, Smart Poche Walls, Ceilings, Floornaments, Doornaments, and Corb. Windows.
A NEW ROBOTIC BRUTALISM
Additive Architectural Elements

By Leslie Lok and Sasa Zivkovic

The 3D printer, a machine which has long been characterized as characterless due to having little to no constraints, is in fact highly distinctive. The Additive Architectural Elements project aims to reveal the 3D printer’s own and highly idiosyncratic architectural tectonics and narratives. Choosing common-place prototypical architectural motifs such as floors, columns, doors, windows, walls, and ceilings, we developed strategies as to how the layering of concrete, the relentless three-dimensional drawing of extruded lines of material, and the act of corbelling can suggest new strategies for building. Our question is: what is the architecture of 3D printed concrete?

Per visual and material association, we became interested in the architecture of Brutalism, borrowing and advancing formal and material strategies developed during this period. For us, Brutalism is most intriguing when bottom-up material processes meet top-down expressive decisions made by an architect. When a symbiosis between material and method of construction facilitates architectural characteristics such as fluidity, cantilevers, and texture, we seek to develop similar strategies for contemporary construction. In many of the great brutalist buildings, this oscillation is expressively present, hence our interest in that time period. In both our research and practice we aim to bring about and introduce such balance to new processes of making.

The A New Robotic Brutalism – Additive Architectural Elements project investigates prototypical methods for 3D printing of building components made in ground-up layered assemblies. Rather than further focusing on the technical advancement of 3D printing technology, this project operates consciously within the status-quo, researching a paradigm-shift that has already occurred but never fully and consequentially been explored architecturally: the 3D printing of buildings with concrete. In a 3D printed structure, all common architectural motifs and building components must be re-thought to fit the logic of layered construction. For example, a concrete printer cannot print in midair, therefore the otherwise simple exercise of making a rectangular window opening becomes de facto an impossibility. Rather than drastically altering the process (stopping the machine to insert a beam), we believe that shortcomings become opportunities for design: as the printer can incrementally cantilever, one possible logical consequence is for the window to become a triangular corbelled arch. Seemingly advanced technology unexpectedly enables narratives that connect to obsolete or archaic structural strategies such as corbelling. Other strategies deployed in the manipulation of form are the modification of printing direction to overcome printer deficiencies, g-code manipulation for smart material deposit, or alterations of geometries for structural reasons related to the fabrication process.

In a series of seven full-scale 3D printed concrete prototypes, forty-nine 3D printed PLA models, seven proto-architectures 3D printed from PLA, ninety-eight element drawings, and one-hundred-ninety-six photographs, the A New Robotic Brutalism – Additive Architectural Elements project explores the architecture of 3D printed concrete within Mushroom Columns, Facio Columns, Smart Poche Walls, Ceilings, Fournier Walls, Doornaments, and Corb. Windows.
Building Tolerance: Design+Building with Reclaimed Wood

SETH MCDOWELL
University of Virginia

Much of the finishes and details in a building are there for the purpose of hiding the gaps that exist at the intersections of materials and building elements (floors/walls/ceilings/roofs). Contemporary construction techniques often depend upon the layering of materials to accommodate material diversity. This allows for a layering of tolerances and precision as well. The first layer (a frame) is rough, the second layer (sheathing) is more precise, and the third layer (finish) is highly exact. This project examines this condition of tolerance and precision. It asks, how does the architect control tolerance? How can the architect design tolerance? These questions will inform strategies for material, construction, program, form and space.

The role of tolerance in architecture

Definition 1: an allowable amount of variation of a specified quantity, especially in the dimensions of a machine or part.

In the translation from drawing to built work, a design must accommodate reality: the imprecision of equipment, humans, materials, and site. The literal gaps given over to “reality” are what we understand as tolerances. Tolerance is the deviation we allow for human (and machine) error in installation and in the creation of the parts that create a building. As with statistics, tolerance is an allowable deviation from the precision of a drawing that will allow a building to “fit” together. While tolerances have improved with the industrialization and manufacture of materials, humans are still involved in the installation of components on site. The assembly of these components is fundamentally contingent on the various workers installing each piece of the building in the right location, the location being where it is intended to be on site, and each piece must be manufactured or cut to the dimensions in a drawing either off or on site. This is essentially impossible to control to perfection – in the field of mathematics, there are theorems that demonstrate that we will only ever be able to get infinitely close to zero. Despite our innovations with robotics and BIM technologies, we will only be able to reduce tolerances, not eliminate them.

Space is a fundamental tool for tolerating discrepancies and differences in architecture. Extra space allows for breathing room between two elements. Overlapping space enables coverage between varied elements. Could it be possible to learn deeper lessons on tolerance from architecture?

The Building Tolerance Pavilion is a site-specific installation constructed by students during a month-long workshop. The temporary pavilion examines the role of tolerance in architecture and in society. The structure is made of irregular, reclaimed wood and is positioned to create a forum for discussion. The exercise enables students to develop techniques for material tolerance while creating a space for social tolerance.
Much of the finishes and details in a building are there for the purpose of hiding the gaps that exist at the intersections of materials and building elements (floors/walls/ceilings/roofs). Contemporary construction techniques often depend upon the layering of materials to accommodate material diversity. This allows for a layering of tolerances and precision as well. The first layer (a frame) is rough, the second layer (sheathing) is more precise, and the third layer (finish) is highly exact. This project examines this condition of tolerance and precision. It asks: how does the architect control tolerance? How can the architect design tolerance? These questions will inform strategies for material, construction, program, form, and space.

The role of tolerance in architecture

Definition: an allowable amount of variation of a specified quantity, especially in the dimensions of a machine or part.

In the translation from drawing to built work, a design must accommodate reality: the imprecision of equipment, humans, materials, and site. The literal gaps given over to “reality” are what we understand as tolerances. Tolerance is the deviation we allow for human (and machine) error in installation and in the creation of the parts that make a building, ie. with robotics, tolerances is an allowable deviation from the precision of a drawing that will allow a building to “fit” together. Tolerances have improved with the industrialization and mass production of materials. This project examines the role of tolerance in architecture.

The assembly of these components is fundamentally contingent on the various workers installing each piece of the building on the site. The literal tolerances are what we need to work with and assume when we build. Each piece must be manufactured or cut to the dimensions in a drawing. The assembly of these components in a building is dependent on the exact dimensions of the parts. While tolerances have improved, the consequences of human errors are still present in construction. This is especially true in the field of mathematics, there are theorems that demonstrate that we will only ever be able to get infinitely close to zero. Despite our innovations with robotics and BIM technologies, we will only be able to reduce tolerances, not eliminate them.

Space is a fundamental tool for tolerating discrepancy and differences in architecture. Extra space allows for breathing room between two elements. Overlapping space enables coverage between varied elements. Could it be possible to learn deeper lessons on tolerance from architecture?

The Building Tolerance Pavilion is a site-specific installation constructed by 13 students during a month-long workshop. The temporary pavilion examines the role of tolerance in architecture and in society. The pavilion is made of irregular, reclaimed wood and is positioned to create a forum for discussion. The exercise enables students to develop techniques for material tolerance while creating a space for social tolerance.
MEDIA INVESTIGATIONS
Another Axon asks the question “Is a drawing architecture?”

Another Axon uses the conventions of an architectural axonometric drawing to make three-dimensional space with an ideal view of the installation seen from the top level of an adjacent parking garage. Questioning the role of the temporary installation at the 2017 Design Biennial Boston, the architect experiments with public space via a disciplinary representation. The use of an architect’s hatch library, directionality of the cladding materials, and projection of CNC tooling paths all rely on the drawing as a primary technique for constructing Another Axon. Situated on a bland site, at the I-93 off-ramp in central Boston and with interest in defining “ordinary architecture,” the project engages the norms of the convention by amplying color and challenges traditional building materials, placing emphasis on playfully reimagining architecture in the field.

Another Axon is composed of eleven minimal art objects and a stand of twelve trees, all of which rely on contemporary reproduction strategies. The art sculptures are lifted from an open source 3D warehouse and range from Donald Judd’s Untitled (1961) to Carl Andre’s Slope (1968) while the artificial trees are constructed by carefully tracing other tree drawings from a landscape catalogue. It is an intentional act to download, borrow, trace, and copy-paste, only to hack and transform the original. This process happens quick and mostly done on autopilot to free up all conceptual wherewithal towards the architectural drawing. The drawing is what is worked on heavily in digital space. Lines, hatches, leave shapes, and edges become materials, tooling paths, and patterns in the architectural project. Most of the design labor was time spent on crafting the drawing as an abstraction, but also obsessing over the drawings detail and execution into the material world.

The selection of materials for Another Axon reinforces the constructed, perfect axon view but also places emphasis on the “ordinary” in architecture. The collapse of minimal art (high) with ordinary materials (low) is intentional. Three traditional exterior building materials are sourced from ubiquitous residential and commercial buildings across the United States—vinyl siding, EIFS (a synthetic stucco), and artificial turf. Each of which are distorted through orientation, color, and application from their original use. The materials are used inappropriately: vinyl siding is installed upside down and the paint stripping used on athletic fields no longer demarcates rules of a field but is rather turned into a 2,000 sq ft drawing.
ANOTHER AXON

Another Axon asks the question “Is a drawing architecture?”

Another Axon uses the conventions of an architectural axonometric drawing to make three-dimensional space with an ideal view of the installation seen from the top level of an adjacent parking garage. Questioning the role of the temporary installation at the 2017 Design Biennial Boston, the architect experiments with public space via a disciplinary representation. The use of an architect’s hatch library, directionally of the cladding materials, and projection of CNC tooling paths all rely on the drawing as a primary technique for constructing Another Axon. Situated on a bland site, at the I-93 off-ramp in central Boston and with interest in defining “ordinary architecture,” the project engages the norms of the convention by amplifying color and challenges traditional building materials, placing emphasis on playfully reimagining architecture in the field.

Another Axon is composed of eleven minimal art objects and a stand of twelve trees, all of which rely on contemporary reproduction strategies. The art sculptures are lifted from an open source 3D warehouse and range from Donald Judd’s *Untitled* (1961) to Carl Andre’s *Slope* (1968) while the artificial trees are constructed by carefully tracing other tree drawings from a landscape catalogue. It is an intentional act to download, borrow, trace, and copy-paste, only to hack and transform the original. This process happens quick and mostly done on auto-pilot to free up all conceptual wherewithal towards the architectural drawing. The drawing is what is worked on heavily in digital space. Lines, hatches, leave shapes, and edges become materials, tooling paths, and patterns in the architectural project. Most of the design labor was time spent on crafting the drawing as an abstraction, but also obsessing over the drawings detail and execution into the material world.

The selection of materials for Another Axon reinforces the constructed, perfect axon view but also places emphasis on the “ordinary” in architecture. The collapse of minimal art (high) with ordinary materials (low) is intentional. Three traditional exterior building materials are sourced from ubiquitous residential and commercial buildings across the United States—vinyl siding, EIFS (a synthetic stucco), and artificial turf. Each of which are distorted through orientation, color, and application from their original use. The materials are used inappropriately: vinyl siding is installed upside down and the paint stripping used on athletic fields no longer demarcates rules of a field but is rather turned into a 2,000 sq ft drawing.
The Situation studio is an experimental pedagogy that introduces a range of design strategies and representational techniques, with the ambition to test architecture’s capacity for sponsoring activities, anticipating scenarios, and producing material effects. Students work with various forms of media including film, axonometric drawing, and model making. Students are challenged to situate architecture in contexts not defined only by locality or geography, but also by social, cultural, and institutional conditions. Material assemblies and actions serve as available sites for implementing a programmatic strategy. In this effort, the studio borrows promiscuously from contemporary cultural production. Television, art direction, interior design, fashion, music and dance moves all aid the design development. The studio contributes to this creative milieu through new forms of media and representation, while remaining committed to architecture’s fundamental drawing and modeling conventions. The ethic of the studio is collective. This not only reflects the changing reality of the profession, where collaboration is essential, but also embraces the fact that creative authorship is never a solitary act.
The Situation Studio

Ashley Bigham, University of Michigan Taubman College of Architecture & Urban Planning

The Situation Studio is taught collaboratively. In 2017 this studio was taught in collaboration with Thom Moran and Ana Morcillo Pallarés. In previous versions of this studio, significant pedagogical contributions were made by Anya Sirota and Meredith Miller.

The Situation studio is an experimental pedagogy that introduces a range of design strategies and representational techniques, with the ambition to test architecture’s capacity for sponsoring activities, anticipating scenarios, and producing material effects. Students work with various forms of media including film, axonometric drawing, and model making. Students are challenged to create new conditions, situations and spaces of encounter. Students create short video clips which imagine radically divergent constituencies and their drastically different experiences of the space. Students use advanced video software, university technology resources including green screen studio, and professional recording equipment.

Project 03 (lower left & upper right, film stills) produces a video that depicts a hybridization of hotel spaces focusing on the stair, the hotel rooms, and the lobby. Students create new conditions, situations and spaces of encounter. Students create short video clips which imagine radically divergent constituencies and their drastically different experiences of the space. Students use advanced video software, university technology resources including green screen studio, and professional recording equipment.

Project 04 (above & left) distills all previous exercises and skills into the design of a small hotel with an additional idiosyncratic program. The student work to combine spatial fragments into a single drawing: an axonometric cut-away through the entire building. Each drawing and project now must consider organization and explicit spatial relationships between different programs.

Material assemblies and actions serve as available sites for implementing a programmatic strategy. In this effort, the studio borrows promiscuously from contemporary cultural production. Television, art direction, interior design, fashion, music and dance moves all aid the design development. The studio contributes to this creative milieu through new forms of media and representation, while remaining committed to architecture’s fundamental drawing and modeling conventions. The ethic of the studio is collective. This not only reflects the changing reality of the profession, where collaboration is essential, but also embraces the fact that creative authorship is never a solitary act.
As both a discipline and a cultural practice, architecture’s expertise lies in its capacity to communicate new ideas through various media. We wield this expertise not simply to build buildings, but to build portals that connect reality as we know it to new realities conjured by our imaginations. We occupy this translation by straddling the line that separates what is from what might be through drawing, writing, and constructing at multiple scales. For this reason, our responsibility to engage with the real and serious issues in the world (social, economic or environmental) manifests less convincingly as policies or calculations and more potently as provocations that help us see a different future.

Make an Anthropo-Scene is a recent installation that produces a provocative, yet incomplete image of an alternative world where an animated collective life expands the boundaries of its environment to include new subjectivities. On one hand, the project reads as a line drawing of simple abstracted figures overlapping in elevation. On the other hand, the surface of the drawing is folded in plan to create nooks and crannies for occupation and interaction with the figural characters. By leveraging the disciplinary trope of the line drawing in a volumetric way, the project portrays an expanded environment of companionship, prompting engagement with overlapping creature-like architectural forms. The outcome is a flickering legibility that snaps into and out of completion and wholeness. The aggregation of parts is legible enough to suggest a possible story, yet still open to filling gaps or generating scenarios through audience participation and invention.

The project explores the potential for architecture to operate as a diorama and a caricature simultaneously, coupling the immersive world-making potential of the diorama with techniques associated with caricature—simplification, distortion, exaggeration, and humor. The medium-specific conventions of both diorama and caricature support the representation of life. With the diorama, life is portrayed in situ, depicting a “realistic” context that generates narrative and empathy for its subject. Alternatively, the caricature depicts life distilled to an essential character, telling a story that privileges an observer’s bias and perspective at the expense of detail and background. As a hybrid condition, Make an Anthropo-Scene reduces form to a simplified volumetric outline and a slightly erroneous and cartoonish shadow that makes occupiable space within and around a shallow alcove.

Located along primary circulation paths at the School of the Art Institute of Chicago, the installation engages a thirty-foot-long alcove to create an occupiable destination where passersby are invited to pop their head in, be hugged by, or sit between these creaturely figures—to become a part of the ever-changing scene. The installation does not claim to solve the problem of environmental degradation by the human race. Rather, it makes an animate scene and calls others to action to join in the making of the scene as well. In the process, it hopes to punch a small, cartoon-shaped hole in the fabric of reality in order to suggest that an alternative world is possible.
is a recent installation that produces a provocative, yet incomplete image of an alternative world where an animated collective life expands the boundaries of its environment to include new subjectivities. On one hand, the project reads as a line drawing of simple abstracted figures overlapping in elevation. On the other hand, the surface of the drawing is folded in plan to create nooks and crannies for occupation and interaction with the figural characters. By leveraging the disciplinary trope of the line drawing in a volumetric way, the project portrays an expanded environment of occupancy viable, prompting engagement with and among the figures as they inhabit the drawing. The project's topographic map-like nature is oriented to movement and occupation, inviting engagement through audience participation and insertion.

MAKE AN ANTHROPO-SCENE

The project explores the potential for architecture to operate as a diorama and a caricature simultaneously, coupling the immersive world-making potential of the diorama with techniques associated with caricature—simplification, distortion, exaggeration, and humor. The medium-specific conventions of both diorama and caricature support the representation of life. With the diorama, life is portrayed in situ, depicting a “realistic” context that generates narrative and empathy for its subject. Alternatively, the caricature depicts life distilled to an essential character, telling a story that privileges an observer’s bias and perspective at the expense of detail and background. As a hybrid condition, Make an Anthropo-Scene reduces form to a simplified volumetric outline and a slightly erroneous and cartoonish shadow that makes occupiable space within and around a shallow alcove.

Figural profiles are distorted when projected onto a folded surface to produce a three-dimensional line drawing. The original figures flicker in and out of legibility as viewers walk past or occupy the alcove. Elevation approaching from the left.

Elevation approaching from the right.
All architects draw...but as architecture becomes increasingly reliant on computerized methods, the attendant tools and conventions for drawing are disposed to conceal labor and eliminate traces of authorship. In many cases, architects draw digitally to rehearse precision, in hopes of achieving the most direct translation between the initial concept and the final construction. Instead of using drawing as a means to an end, can architects seize new opportunities by complicating the relationship between drawing and building?

Unlike digital delineations, handmade drawings and sketches more overtly register the temperament of one’s hand – the quiver of a line, the change in stroke pressure, the overextension of crossing vectors to announce a corner, and the smudge of graphite to enforce an edge. Such qualities result in precarious representations that seem raw, incomplete, and capricious. However, these autobiographical traces disappear when computer-driven techniques are prioritized and when a scaled drawing is translated to a full-scale building. While the trained eye can likely spot the difference between the sharp conviction of a Miesian line and the loose exuberance of a Gehry sketch, is it possible to produce an architecture that literalizes those effects? Instead of a complete return to hand-drafting, can architects accept contemporary modes of production and physically achieve handwrought, sketch-like qualities through digital means? Alternatively, if architecture depends on physical “stuff” as a form of currency, in what ways can those objects begin to image the digital? Lastly, what effects are generated when we collapse the scale of drawing with that of building?

BLDG_DRWG is a project that reorients the ways in which architecture is produced and consumed by recouping handwrought drawing effects and rearranging drawing conventions at the building scale. Oscillating between analog methods (ink, paint, tape) and digital processes (scanning, photoshop filtering, milling), this project intensifies attributes of drawing otherwise lost in translation. A series of 1:1 investigations executed collectively harnesses the potency of these effects and uses them to reconstitute existing architectural conditions. The results of these studies were reassembled as a room – one fragment of an unfinished building – that speaks to the instability of its own representation.
Gridspace

ERIK HERRMANN
University of Michigan

The grid is arguably the most enduring and problematic emblem of modern optics and visualization. Since Alberti’s publication of de Pictura in 1435 the grid has been the dominant cultural device for translating the continuous, three-dimensional world into discrete, flat compositions.

The continued relevance of the grid in contemporary image culture is assured at least in the foreseeable future through its ubiquitous digital instantiation - the pixel - which has remained the principal format for image transmission and display since the digital turn.

This representation course, Gridspace, considers the contemporary role of the grid in image culture, revisiting the grid as a technique of both optical translation and formal composition in architectural representations. Grids logically extend infinitely and this representation course leverages their inherent incompleteness in time and space through a series of drawing and modeling exercises of increasing scale and sophistication. Beginning at the tectonic of the single Frame (Part I), this seminar rapidly “zoomed out” in a concise set of exercises, expanding to consider the space of a single Room (Part II) and finally (featured in this exhibition) the Building (Part III).

In Part I, the Frame, students composed "Joiners" in the tradition of David Hockney with a single window as the subject. In Part II, the Room, students revisited room etchings by De Vries, and "remixed" their spatial effects by intervening in the geometry and expression of the grid in the composition.

Finally, in Part III, students were assigned precedent projects with unique relationships to the grid as a motif in architecture. Through an analytic process each student distilled the role of the grid within their particular precedent project, then produced a new visualization of the project based on that interpretation. The central concern of these investigations was the role of the grid in each act of architecture. Ultimately, this body of work speculates on the alternative possibilities embedded in the very wefts and warps of the grid.
Breaking BIM with Abnormal Components

SETH MCDOWELL
University of Virginia

Building Information Modeling (BIM) is not just a tool for project delivery and production. This research project seeks to identify new relationships between design processes and BIM that leverage the computational resources for design objectives. The project outlines two approaches to breaking the constraints of BIM with more intuitive workflows for design. These include associative modules and conceptual massing with adaptive components. The work here highlights an exhibition created for the 2015 NY Architecture League Prize for Young Architects.

The exhibition presented a grouping of “spatial constructs” created from strange, abnormal materials. Using an identical set of material “ingredients,” two different artists, working from two separate locations, constructed a radically different set of physical models (objects) utilizing abnormal construction techniques: linear threaded wads of chewing gum coated with dried spearmint leaves, and intricate modular constructions of laser-cut wood. These objects are 12-inch cubes that express the nature of tectonics and properties inherent to the material. Drawings of these models, created by Building Information Models translate the spatial constructs into architectural speculations—mysterious formations without context or utility.

The exercise presents two modalities of the exception. The methodology and exhibition was structured by two operations:

- Anomalous construct: the principle of variance. An anomaly is produced from the multiplicity of parts—parts that do not exactly fit together (wood clips).
- Clinamen construct: the principle of deviance. A material détournement is created (chewing gum and dried spearmint leaves).

The project addresses concerns about BIM’s relationship to design workflow. BIM platforms contain pallets of default/generic tools, which tend to result in architecture of a generic quality. Parametric objects are simply “dropped into” designs without careful considerations. Customization can be a cumbersome chore and only extremely patient or tech savvy designers achieve provocative results. Thus, the agenda with these simulated BIM drawings is to transfer the spatial complexity and abstraction of the physical, unfindable objects into the heterogeneous BIM environment in effort to break the boundaries present in the software. These abnormal objects are the tools used to dissect Building Information Modeling.
Breaking BIM with Abnormal Components

Building Information Modeling (BIM) is not just a tool for project delivery and production. This research project seeks to identify new relationships between design processes and BIM that leverage the computational resources for design objectives. The project outlines two approaches to breaking the constraints of BIM with more intuitive workflows for design. These include associative modules and conceptual massing with adaptive components. The work here highlights an exhibition created for the 2015 NY Architecture League Prize for Young Architects.
Unmediated Matter and Catenary Practices

FEDERICO GARCIA LAMMERS
South Dakota State University

Since the 15th century, Albertian methods of notation have positioned media, or more precisely, ways of mediating between graphical representation and construction at the center of the architecture discipline. In the face of evolving digital processes, media continues to be the primary means for directing labor and for planning the organization of physical matter. Media gives labor its intellectual scope and connects mental and physical production. The work presented in this poster posits that complex geometries can be constructed without explicit direction or methods of mediating matter. In other words, complex - double curvature - forms can be built without construction drawings. If so, what is the role of media in forming physical matter into geometries that can resist gravity through form?

The vehicle for exploring this question is the double-curvature work and catenary practices of the late Uruguayan engineer Eladio Dieste. This work asks media to negotiate between digital craft and automated production of images. The images in this project are made using digital techniques, like grasshopper definitions for Rhino and other 2D line-based outputs in 3D-modelling software. Images are not used to generate irrational forms, but rather expand the familiarity and scope of ways of thinking and seeing catenary shapes. To this end, media is used as a speculative framework through which to imagine and construct complex forms without explicitly directing the labor that connects them to people and tools. Pushing media away from mediating matter, or rather, designing ways of fostering unmediated matter, is borrowed from Dieste’s thinking about the role of graphical representation:

“All of the great structures of the past were built with extremely simple plans. I am aware that the organization of work was very different. I also know by experience the difficulties involved in envisioning things that cannot be expressed well in drawing, but many times the results are worth this effort.” 1

The idea of drawing not being a universal medium for architectural representation is evident in John May’s writing, “Everything is Already an Image”. May describes the technical aspects of three categories of media, or visual depiction, which define contemporary architectural culture: drawings, photographs, and images. He defines these categories through technical means because “architecture today seems uninterested in distinguishing between these three or, at the very least, seems unable to parse their ambiguities.” 2 Unmediated Matter and Catenary Practices explores the relationship between drawings and images, as a means to question their instrumentality. According to May, “drawings are static hand-mechanical depictions that deposit geometric, rule-bound marks onto a stable surface.” Images, unlike photographs, are the process of coordinating energetic outputs. Photographs manage chemical exposure processes; images manage data and energy.

The effects of automated representation highlight the prevailing contemporary condition of seeing images masquerading as “digital drawings” - tasked with mediating matter. Pairing the technical distinction between drawings and images with the geometric specificity of Dieste’s catenary forms exposes the role of media in forming physical matter.

NOTES

The Ethical Imperative

Since the 15th century, Albertian methods of notation have positioned media, or more precisely, ways of mediating between graphical representation and construction at the center of the architecture discipline. In the face of evolving digital processes, media continues to be the primary means for directing labor and for planning the organization of physical matter. Media gives labor its intellectual scope and connects mental and physical production. The work presented in this poster posits that complex geometries can be constructed without explicit direction or methods of mediating matter. In other words, complex - double curvature - forms can be built without construction drawings. If so, what is the role of media in forming physical matter into geometries that can resist gravity through form?

The vehicle for exploring this question is the double-curvature work and catenary practices of the late Uruguayan engineer Eladio Dieste. This work asks media to negotiate between digital craft and automated production of images. The images in this project are made using digital techniques, like grasshopper definitions for Rhino and other 2D line-based outputs in 3D-modelling software. Images are not used to generate irrational forms, but rather expand the familiarity and scope of ways of thinking and seeing catenary shapes. To this end, media is used as a speculative framework through which to imagine and construct complex forms without explicitly directing the labor that connects them to people and tools. Pushing media away from mediating matter, or rather, designing ways of fostering unmediated matter, is borrowed from Dieste’s thinking about the role of graphical representation:

“All of the great structures of the past were built with extremely simple plans. I am aware that the organization of work was very different. I also know by experience the difficulties involved in envisioning things that cannot be expressed well in drawing, but many times the results are worth this effort.” - Eladio Dieste

The idea of drawing not being a universal medium for architectural representation is evident in John May’s writing, “Everything is Already an Image.” May describes the technical aspects of three categories of media, or visual depiction, which define contemporary architectural culture: drawings, photographs, and images. He defines these categories through technical means because “architecture today seems uninterested in distinguishing between these three or, at the very least, seems unable to parse their ambiguities.”

UNMEDIATED MATTER and CATERNY PRACTICES

Federico Garcia Lammers
Department of Architecture (DoArch)
South Dakota State University

URBANISM
Revitalization of Tejgaon Industrial Brown-field Area

RIFFAT FARJANA
University Affiliation

"Tejgaon" area, with the expansion of Dhaka city, situated at the heart of the city at recent time. The area is well known for its industrial activities and vibrancy. However, the acres of land has turned into Brownfield area and has caught the eye of architects and planner to propose something new for the city.

Extensive study and analysis on land use planning, road networks, vegetations, day and night time activities, peoples participation has led to the conclusion that the industrial Brownfield area has 4 private universities which is still working properly. The key point (Universities) again engender the question about the need of educational institutions at Dhaka city. From data survey and literature study the conclusion has been made to propose an "Educational Hub" consist of 10 universities with urban park and other supporting facilities to revitalize the total area.

However, the Tejgaon Brownfield area is placed at the bank of Hatirjheel lake so the other concern for the project was to create an Urban breathing zone with accommodating functions. A park and elevated walkways has been addressed for people. The perforated elevated walkways, which is connecting different part of Tejgaon area, has designed considering the heat and monsoon of the country.

The universities has been placed carefully and common functions like library, multipurpose and amphitheatre has been placed at the middle as a shared function to reduce the cost. Housing for student and stuffs has been proposed here. Main roads along with diagonal pedestrian routes has been re designed. Common amenities like Hospital, Bus station, Mosque, Shopping mall and small bazaar has been designed here to support the educational hub. Moreover, trees, garden, life, vendors, nature and park has given special priority to revitalize the area.
The ‘Ecological Mediators’ offers resilient solutions along each of Quebec City’s four rivers of Cap-Rouge, Saint-Charles, Beauport and Montmorency by considering natural and anthropogenically-altered hydrologic fluctuations (tides, sea level rise, flooding) that define the ecosystems, casting the rivers as mediators of these changing environmental conditions. Turning each of the rivers into a dynamic filter, the project creates built-in capacity for the rivers and their floodplains to absorb and alleviate changes and transformations that might be otherwise devastating. The project foresees controlling water runoff by creating treatment trains with both subsurface infiltration/biofiltration areas and constructed surface wetlands. By designating areas for aquaculture and urban nurseries, there will be a built-in capacity for growth and replenishment of the riverscapes both as practical and educational components that complements the gestures at the landscape and urban level.

The project also creates better access and connectivity in between points of interest on each river and throughout the city by encouraging visitation through contemplative (trails, access areas), performative (open-air theaters, sculpture parks) and recreational (canoe launching, BMX) areas that are available continuously throughout days (tide cycles) and seasons. It is essential to maintain the balance between the natural and the man-made in the unique setting of the city, which is geographically defined by the rivers that shape its territory. Considering the characteristics of the different urban zones—from densely populated neighborhoods to industrial sites and commercial zones— and the natural or altered setting of each of the rivers has led to a network of ‘access points’ throughout the territory. By rendering the riverscapes more visible, connected, and accessible, our goal is to make the city-dwellers more aware of the rivers and cognizant of their dynamic temporal characteristics. In addition, we have created continuous access to the shore of St-Lawrence, into which the four rivers empty, with a second, all-season connected network of trails in parallel further inland to create a ‘loop’ that traverses St-Lawrence and returns through a network of paths that would be used for walking, biking, skating, and cross-country skiing.

The project encourages the citizens to appreciate each of the rivers at the macro level by celebrating the geographic and environmental characteristics of each river. At the territorial scale, connecting these rivers in two directions, parallel and perpendicular to St-Lawrence, and creating green pockets along those lines will contribute to a greener, better-connected city.
The Ethical Imperative
Brooklyn’s Gowanus Watershed is a case-study in the water management problems of the global de-industrializing city that is witnessing unprecedented increases in density straining its existing infrastructure for handling water. The introduction of the Gowanus Canal onto the National Priority list for the EPA and its designation as a Superfund site in 2010 has raised the public consciousness of the toxicity of the waterway and focused needed attention on ecological relief of this post-industrial watershed’s runoff and storm-water infiltration. New York, like many industrializing cities, developed an infrastructure of the Combined Sewer, a system that drains Waste-Water in the same system as surface run-off and storm-water, resulting in a health risk during times of storm overflow. Recently, much focus has been given to the water infiltration and remediation surface strategies within the neighborhood’s streetscape and open space network, but relatively little attention has been paid to the other major contributor to storm-water runoff, the surrounding building roofs.

The research of this seminar investigated the inter-relationship between urban density within existing sewer-sheds through a rigorous examination of mass, volume and zoning within the Gowanus Canal Neighborhood of Brooklyn. Beginning with a documentation, classification and categorization of the building types by their respective Combined Sewer Outfall, the research determined which formal building types and zones were in the greatest danger of contamination during flood, and which building types and conditions were the greatest contributors. Following this, the research examined, buildings within their district by their formal type and drainage methodology as far as which buildings contributed to the sewer directly versus the streetscape, identifying opportunities afforded by the surface area retention capacity and site morphological strategy.

Eschewing the notion, that urban retrofitting solutions could be implemented entirely by subsidy or public money as is being pursued at the ground-level, the seminar team pursued a public-private partnership methodology for proposing a series of changes for the existing urban Sewershed. Through a documentation of the current zoning envelope in relationship to its built mass on a study zone, the team uncovered latent opportunities within the existing condition for the implementation of future absorption and diversion retrofitting strategies, such as new roof geometry guidelines, green roofs and other planting strategies, that could be applied throughout the watershed to increase infiltration alleviating the over-saturated infrastructure.

Going further, the group examined how new construction by individual owners, could re-mediate the existing roof conditions by creating a series of new sponge building typologies on the existing roof-scape. The team took the next steps to create a series of urban design guidelines through potential up-zoning revisions that would allow for developers to work across several roof-scapes parcels towards the creation of both new market-rate housing and public social benefits such as roof parks and recreational programming. The final product of this seminar will be made available to NY state and NYC Planning agencies, as well as the local non profit, The Gowanus Canal Conservancy who served as an expert guide the project along throughout the semester.
Brooklyn’s Gowanus Canal watershed in a case-study in the water management problems of the global de-industrializing city center that is witnessing unprecedented increases in density testing its existing infrastructure for handling new storm-water, resulting in a health risk downstream of its combined sewer overflow. New York, like many de-industrializing cities, developed an infrastructure of the Combined Sewer, a system that drains waste-water in the same system as surface run-off and storm-water, resulting in a health risk during times of storm overflow. Recently, much focus has been given to the water infiltration and remediation surface strategies within the neighborhood’s street-scape and open space network, but relatively little attention has been paid to the other major contributor to storm-water runoff, the surrounding building roofs.

The research of this seminar investigated the inter-relationship between urban density within existing sewer-sheds through a rigorous examination of mass, volume and zoning within the Gowanus Canal neighborhood of Brooklyn. Beginning with a documentation, classification and categorization of the building types by their respective Combined Sewer Outfall, the research determined which formal building types and zones were in the greatest danger of contamination during flood, and which building types and conditions were the greatest contributors. Following this, the research examined buildings within their district by their formal type and drainage methodology as far as which buildings contributed to the sewer directly versus the streetscape, identifying opportunities afforded by the surface area retention capacity and site morphological strategy.

Devising the notion that urban retrofitting solutions could be implemented entirely by market or public money as the seminar team pursues a public-private partnership methodology for proposing a series of changes for the existing urban Sewershed. Through a documentation of current zoning to its mutual mass on a study zone, the team uncovered latent opportunities within the existing condition for the implementation of new absorption and diversion retrofitting strategies, such as new roof geometry guidelines, green roofs and other planning to improve storm-water runoff throughout the watershed.

The final product of this seminar will be made available to NY state and NYC Planning agencies, as well as the local non-profit, The Gowanus Canal Conservancy who served as the local expert guide the project along throughout the semester.
This project is seeking to change the monotonous scenario of Big-Box urbanism in South Downtown, Atlanta. Due to the trend of increasing suburbanization and disinvestment in downtown area in the last several decades, South Downtown has become a place where no public life and activities ever happen but only low-density development with large area of lifeless parking lot. Currently parking lot makes up near half of total land use and daily parking lot vacancy is more than 30%.

At present, South Downtown is facing three main challenges: 1. Urban Heat Island. Due to the excessive use of impervious surface and the lack of tree canopy and waterbody, the average temperature in South Downtown is 1-2 degrees Celsius higher than other Atlanta metro areas. 2. Stormwater Management. Atlanta’s average sewage fee is one of the highest among all American cities and the percentage of surface runoff is much higher in South Downtown than others. According to topography analysis our site is located in the lowest point of South Downtown so it is ecologically vulnerable in light of stormwater; 3. Defensive Architecture and Segregated Landscape. All buildings and structures are independent from each other with a sense of “self-protection” which results in the isolation of South Downtown’s urban landscape.

Our site is a government parking deck to the south of Atlanta City Hall and this project is sponsored by Department of Planning, City of Atlanta. Our objective is to bring the space which is previously take over by parking deck back to public life along with the mitigation of UHI effect and stormwater challenge. The rooftop of this parking deck is replaced by a roof garden and we create a cross-shape axis on the ground to strengthen the accessibility and create connection to the surrounding area. Also, we introduce the notion of urban agriculture and stormwater management to this project in order to mitigate the ecological footprint and create an environmentally friendly public space. Instead of flowing to the pipe, rainwater will either be collected by the living machine on the roof and the bioswale on the ground or directly infiltrate into the soil. After filtration, water can be reused for irrigation, flushing and condensation. When there is high amount of precipitation, excessive rainwater will be directed to the retention pond through constructed bioswale or watercourse and be stored temporarily. In the future, we can also build underground cisterns to enlarge the capacity of stormwater storage.

Meanwhile, this project encourages diversified public activities in South Downtown. On the rooftop there are four main theme gardens: beer garden, farmer’s market, living machine park and family playground and all of them are connected by a loop trail. The most fantastic scene is that due to the difference of elevation the main entrance of this parking deck is on fourth floor which means if you go straight from City Hall to this parking deck, walk uphill through the ramp, the cityscape is all in front of your eyes.
A New Vision for Midtown: Smart Growth Principles Drive a Plan to Transform an Auto Zone into a Walkable College Town District

Madlen Simon
University of Maryland

Jingjing Liu
University of Maryland

Ed Cahan
University of Maryland

Lily Mundroff
University of Maryland

Oluwatomi Thomas
University of Maryland

Timothy Pula
University of Maryland

Laura Burns
University of Maryland

The City of College Park and the University of Maryland have entered into a partnership to engage potential synergies between campus and community to create a vibrant urban environment based upon principles of smart growth. The partnership’s current focus is on College Park’s Midtown District, encompassing the stretch of Baltimore Avenue from the intersection of University Boulevard to the University of Maryland’s main campus gate. Formerly known as Route 1, Baltimore Avenue is shedding its image as a placeless automotive corridor lined with fast food, service stations, and auto dealerships and becoming an attractive location for higher density development as the University’s zone of influence expands. A new design for Baltimore Avenue aims to transform the highway into a route with multi-modal transportation options, using a complete streets approach. The site is adjacent to the new Discovery District to the south, bounded on the west by the University of Maryland and on the east by the historic African-American community of Lakeland with its school, community center, and church, and the existing residential neighborhoods of Berwyn Heights and Branchville. New residential slabs rising along the West side of Baltimore Avenue take the form of a wall dividing community and university. The Paint Branch river flows along the west side of the site, further reinforcing the town/gown separation.

The College Park City-University Partnership commissioned this master planning study as a guide to developers interested in initiating new projects within the Midtown District. The multi-disciplinary design team was asked to envision a healthy, walkable district that fulfills the mandate of the partnership to tie together University and surrounding communities with sustainable mixed development. We developed a program through a combination of community and stakeholder engagement and market research. Key concepts that emerged from the team’s dialogues with stakeholders and community members were: authentic sense of place, connectivity, and healthy community. Market research pointed to opportunities for rental housing for students and young professionals, office space focused on University innovation initiatives, and retail promoting a sense of community. The proposed master plan illustrates the resulting vision for the Midtown District; focused proposals show how the place-making vision guides planning for four specific sites that are ripe for redevelopment in the near future.

The design team discovered an authentic sense of place in the history of the Lakeland community and the ecology of the Paint Branch, with the natural beauty of its native plants and animals. The proposed Paint Branch Promenade transforms the river from barrier to social connector, linking residential neighborhoods and providing access to nature and healthy outdoor recreation linked to a regional trail network. The pattern of development along Baltimore Boulevard is rotated 90 degrees, with buildings enclosing pedestrian mews and plazas connecting neighborhood streets to the river. A new Innovation Drive crosses the river, connecting the northern end of campus to the Midtown District. An existing diagonal path from Campus Drive leads pedestrians across a barn dance crossing to a new market square at the Lakeland Hub. With retail opening onto the pedestrian realm, residential and office uses above, and garage below, the compact mixed-use buildings on both sides of the Boulevard connect University and surrounding communities, providing “third places” for convivial social interactions.
A New Vision for Midtown
When introduced in the near future, driverless cars are anticipated to be the first independent robots widely encountered by the public. Capable of sensing and navigating their surroundings, they are the embodiments of a digitally-networked future urban ecology, characterized by a paradigm shift in the relationship between vehicles, users, infrastructure, material flows, and the built environment at large. Driverless Urban Futures is a drawing-based research project that maps the possible spatial and social impacts of driverless technology on the city of the near-future. Amidst the race between auto-manufacturers to produce their own driverless car, and a multitude of arguments that support or criticize the technology, rarely have the unique disciplinary tools of architecture and design (particularly, the special representational and discursive agencies of drawing) been called into action—a contribution the drawings included here seek to make. Envisioning the future through drawing does not come without its own aesthetic and ethical questions. From a sociological perspective, the future constitutes a discursive space and an object of contestation, which is colonized by competing visions produced in and projected from the present. As Anthony Giddens contends, late-modern society the most future-oriented there has ever been, while our visions of the future are typically dominated by advances in technology. As a projective discipline, and one that is simultaneously concerned with, and informed by, technology, how can architecture contribute to a responsive and responsible engagement with the future?

Conceived as a speculative atlas, Driverless Urban Futures visualizes the possible spatial, and consequentially, social, impacts of driverless vehicles on the city of the near-future. Its drawings comprise three open-ended ‘roadmaps’: illustrations of narrative scenarios, diagrams of urban-scale spatial structures and temporal patterns, and vignettes of street-scale assemblies and interactions. The work is based on the contention that the act of drawing is essential to the practice of architecture, and that drawings possess agency and can serve as catalysts of imagination, facilitators of communication, and instigators of debate. Accordingly, in contrast to both the glossy renderings of car-manufacturers and the overly technical graphs of transportation researchers, the spatial diagrams and perspective collages seek to be simultaneously exacting and experimental. They are purposefully characterized by a graphic flatness and a display of their artificiality, drawn with a simple and slightly cartoonish hand, so as to make them legible and engaging for broad audiences. Likewise, while the specific elements of the drawings are rendered with care and precision, they are left purposefully abstract so as to suggest a possible, as opposed to a certain, future. Engendering a plurality of interpretations—or even, of productive misreadings—can then become a means for drawing closer to the unpredictable consequences and unforeseen uses characteristic of new technologies. In addition, even though the drawings are predominantly speculations on probable changes to the form and function of elements of the built environment as a result of driverless vehicle technology, also implicit within this assembly of line-work is a ‘drawing together’ of many other matters of concern: from public space, infrastructure, and energy consumption to spatial practices, well-being, and social interaction. Jointly informed by the aesthetic and ethical concerns of future envisioning, the agency of the drawings is seen to reside in the spaces between contested futures and collective (mis)readings.
Envisioning Contested Futures

/// The Aesth/Ethics of Drawing

When introduced to the near future, driverless cars are anticipated to reduce the need for independent private automobility, diminishing the public. Drivers changing and engaging their surroundings. They are anticipated to benefit from shared trip opportunities, saving users and fuel, while decreasing the number of vehicles on the road. By 2035, the majority of vehicles are expected to be autonomous, whether privately owned or shared. They are attended to by a system of sensor-based decision-making and self-driving technologies, including lidar, sensors, cameras, and machine learning, that allow the vehicle to navigate and interact with its environment. The goal is to create a sustainable, efficient, and safe transportation system that minimizes accidents and improves mobility for all.

Street Scale Impacts

/// Flat Street

Typical Flat Street with Corral Parking

Flat Street with Passenger Drop-off Zones

Driverless Urban Futures

A Speculative Atlas

Envisioning the future, driverless cars are anticipated to reduce the need for independent private automobility, diminishing the public. Drivers changing and engaging their surroundings. They are anticipated to benefit from shared trip opportunities, saving users and fuel, while decreasing the number of vehicles on the road. By 2035, the majority of vehicles are expected to be autonomous, whether privately owned or shared. They are attended to by a system of sensor-based decision-making and self-driving technologies, including lidar, sensors, cameras, and machine learning, that allow the vehicle to navigate and interact with its environment. The goal is to create a sustainable, efficient, and safe transportation system that minimizes accidents and improves mobility for all.

Urban Scale Impacts

/// Urban Growth Scenarios

The text is a speculative atlas that explores the future of urban development and transportation, focusing on the impacts of autonomous vehicles. It includes scenarios and diagrams illustrating the potential changes in urban planning, transportation, and infrastructure. The atlas is intended to provoke discussion and stimulate innovative thinking about the future of cities.

Narrative Scenarios

/// The Urbanite

At the other end, a series of narrative scenarios explore the implications of driverless vehicles on urban life. These scenarios range from the impacts on individual transportation to the broader implications for urban planning and policy. The aim is to provide a framework for discussing and planning for the future of urban environments in the context of autonomous vehicles.
The Bénin Studio - A Tale of Two Cities

JOHN S. ELLIS
Wentworth Institute of Technology

In May 2015 the United Nations released a report suggesting that 10 million more people are added to the urban population of Sub-Saharan Africa each year, over two-thirds (7 million) live in informal settlements and only 2 million can expect ever to move out from them.

Urban planning and governance have not adapted fast enough to the extraordinary situation of rapid urban changes in Africa.

A new process of urbanization has been unleashed by the masses of low income migrants who have flocked to the cities since independence, and who are seeking to solve the problems of accommodation and employment on their own informal terms.

Current research and practice suggest that the path to urban peace and sustainability in urban Africa lies in building more inclusive and socially equitable cities where everyone, regardless of their economic means, gender, age, ethnic origin or religion are enabled and empowered to participate productively in the social, economic and political opportunities that cities offer.

A view that acknowledges the reality of slums, and at the same time the dynamism of slum inhabitants to resolve their very problems could go a long way in helping cities cope with rapid urbanization.

In the case of Benin this dynamism is magnified by the diverse ethnic, cultural, and religious make-up of the people and their capacities to live together in peace.

The focus of the 2017 fall Benin Studio was the tale of two cities, the formal and informal. We listened and responded to the historic and contemporary stories of two very different places separated by less than 12 kilometers of water.

We focused our energies on the settlements of Ganvie, a city formed by refugees from the slave trade, and the other Akpakpa-Dodomey, a settlement formed by contemporary economic refugees from Benin, Togo, Ghana, Burkina-Faso, Niger, and Nigeria.

As you will see in the accompanying projects the students skillfully developed design methods and projects, together with local community member, based on initial discoveries made during a 10-day visit to Bénin early in the semester.

The studio required students cultivate a particular point of view towards architecture and to define its role in the making of a better world.

The Bénin Studio 2017 was supported by L’Atelier Des Griots, with many thanks for their dedicated support throughout the semester and beyond.

Professor John Stephen Ellis, AIA and his colleague Beninese architect Habib Meme are co-founders of l’Atelier Des Griots, a non-profit international studio devoted to the study and implementation of low-tech ecological urban architecture and planning.

L’Atelier des Griots is also dedicated to the West African tradition of the griot — telling the many stories of the community through the medium of art, architecture and urbanism.

The founding of L’Atelier Des Griots in January 2017 is the first step in establishing a the first Design Build School in West Africa.
The Ethical Imperative

The Benin Studio

A Tale of Two Cities

In May 2015 the United Nations released a report suggesting that 12 million more people are added to the urban population of sub-Saharan Africa each year (Richardson, 2015) each year and only 6 million can expect even to move out of them.

Urban planning and governance have not adapted fast enough to the extraordinary increase of rural urban exodus in Africa. In large cities, notably in those of Benin, Nigeria, Ghana, Togo, and Cameroon, the workforce is dominated by young men and women who have flooded to the cities since independence. The desire for education and employment on their own terms.

Current research and practice suggest that the path to urban peace and stability in urban Africa lies in building more inclusive and socially equitable cities where everyone, regardless of their economic means, gender, age, ethnic origin or religion are enabled and empowered to participate actively in the social, economic and political lives of the city.

A view that acknowledges the reality of slums, and at the same time the dynamism of urban inhabitants to resolve their very problems, could go a long way in helping cities cope with rapid urbanization. The studio not only imposes the need for more inclusive and participatory planning but promotes a holistic view that incorporates the economic, cultural and religious make-up of the people and their capabilities for the greater good.

The focus of the 2017 fall Benin Studio was the tale of two cities. The studio and Beyond. The students also researched the social and contemporary issues of two very different places separated by less than 12 kilometers of water.

We focused our energies on the settlements of Ganvie, a city formed by refugees from the slave trade, and the other Apabè- Domodon, a town forged by contemporary residents from Benin, Togo, Ghana, Burkina-Faso, Niger, and Nigeria.

As you will see in the accompanying projects the students studied them to embrace design methods and strategies together with the students and a local community, and found it a unique opportunity to showcase the extraordinary moment made during a 10-day visit to Benin early in the semester.

The studio required students to cultivate a particular point of view toward architecture and to define its role in the context of a rapidly growing Benin. The Benin Studio 2017 was supported by L’Atelier Des Griots, with many thanks for their dedicated support throughout the semester and beyond.

Professor John Stephen Ellis, AIA and his colleague Beninese architect Webi Meme are co-founders of L’Atelier Des Griots, a nonprofit international studio devoted to the study and implementation of low-tech ecological urban architecture and planning.

L’Atelier des Griots is also dedicated to the West African tradition of the grid – telling the many stories of the community through the medium of architecture and urbanism.

The founding of L’Atelier Des Griots in January 2017 was first step in establishing the first Design Studio School in West Africa.
A Grammar for Mutualism

NICOLE SYLVIA
University of British Columbia

Increasingly, planners and other urban thinkers are investing in the promises afforded by the Smart City—the ability to measure, model and project what the city is and to manage what it becomes. This way of approaching urban development inherently lends to urban spaces that are (intentionally) predictable and conservative. Working at the coarse scale of the zone, the city plan, and the spreadsheet, the urban environment is simplified, made easier to control and to understand. Consequently, complexity is purged and with it a host of agents and processes that are deemed undesirable for one reason or another. This is not the process for the making of an ethical city.

This project is a reassertion for architecture as a necessary and prominent agent of an ethical, inclusive urbanism. The very nature and scale of the key space-forming tools of architecture—membrane, shape, material—enable the creation of spaces of difference in close proximity. However, it is not the presence of difference per se that is the goal. In reconciling these differences architecture need not fortify hermetic enclaves, instead it may operate opportunistically to produce conditions of mutualism informed by these differences.

This project explores a grammar of architectural mutualism within the contemporary context of Chandigarh. While the original Corbusian design was highly functionalist and segregated in organization, this characteristic of the fabric has been co-opted and intensified as a way to promote a protectionist agenda by and for the city’s elite. Over the last decade all new development of a significant scale—from the IT Park and mall, to slum rehabilitation colonies—has taken place outside of the formal city limits; the city is paralyzed as development grows haphazardly around it. This year’s appointment as a Smart City (and the funding that comes with it) provides an opportunity to forge a new way forward. By refining the increment of zoning from the sector to the building the city may counteract the exodus in favor of cultivating inclusion and exchange and consequently, a more vibrant and vital urbanism.

Operating along one of the city’s main boulevards, a systematic array of block-buildings redeploy the rules of the city-wide frame-control act. The buildings’ simple frame structure allows for a diversity of occupancies while still conforming to an urban order. Instead of relying on the fabric’s exterior spaces to soften the transition from one building’s program to the next, each structure itself hosts two different tenures. Where they meet a third space forms, flexing and contracting to provide a synthetic and generative benefit to both—a moment of mutualism, embedded in both architectural and urban form.
Increasingly, planners and other urban thinkers are inveeting in the promises afforded by the Smart City—технологична и транспортная сеть, истина и чистота, которые делают ее уникальной, предсказуемой и упорядоченной. Вместе с тем, это также ключ к управлению и управлению городом. Этот подход к управлению городом, по сути, является результатом взаимодействия между архитектором и обществом, где архитектура и общественное пространство создают условия для взаимодействия и выступают как мост между обществом и архитектурой.

This project is a reassertion for architecture as a necessary and prominent agent of an ethical, inclusive urbanism. The very nature and scale of the key space-forming tools of architecture—membrane, shape, material—enable the creation of spaces of difference in close proximity. However, it is not the presence of difference per se that is the goal. In reconciling these differences architecture need not fortify hermetic enclaves, instead it may operate opportunistically to produce conditions of mutualism informed by these differences.

This project explores a grammar of architectural mutualism within the contemporary context of Chandigarh. While the original Corbusian design was highly functionalist and segregated in organization, the characteristics of the latter have been co-opted and intensified as a way to promote a protectionist agenda by and for the city’s elite. Over the last decade all new development of a significant scale—from the IT Park and mall, to slum rehabilitation colonies—has taken place outside of the formal city limits; the city is paralyzed as development grows haphazardly around it. This year’s appointment as a Smart City (and the funding that comes with it) provides an opportunity to forge a new way forward. By refining the increment of zoning from the sector to the building the city may counteract the exodus in favor of cultivating inclusion and exchange and consequently a more vibrant and vital urbanism.

Operating along one of the city’s main boulevards, a systematic array of block-buildings redeploys the roles of the city-wide frame-control act. The buildings’ simple frame structure allows for a diversity of occupancies while still conforming to an urban order. Instead of relying on the fabric’s exterior spaces to soften the transition from one building’s program to the next, each structure itself hosts two different tenures. Where they meet a third space forms, flexing and contracting to provide a synthetic and generative benefit to both—a moment of mutualism, embedded in both architectural and urban form.

A Grammar for Mutualism

Architectural agency in the production of an ethical urbanism

Diverse programs and actors cast from the formal city

Architectural // Urban Mediation

From the functionalist urban unit...
...to the mutualistic architectural increment

Rehabilitation // Reliable Infrastructure // Luxury Housing

Craft-based Job Training // Socially-connected Workspace for Graduates // Dormitory

Start-up Incubation Offices // Flex Space // Research Laboratories
OPEN
Atmospheric Water Generating and Urban Farm Tower

CAMILO CERRO
American University of Sharjah

Atmospheric Water Generator and Urban Farm Tower

The human right to water and sanitation recognized by the United Nations (UN) General Assembly on July 28th 2010, entitles everyone to sufficient, safe, acceptable, physically accessible and affordable water for personal and domestic uses. As we know, this is not the case in the poorest communities of the developing world. But with the use of atmospheric water generators access to clean water in areas with high levels of humidity (relative humidity over 30%) could be possible without huge government expense in plumbing and sewage infrastructure. This poster proposes the construction of multiple water towers in some of the largest slums in the planet, with the primary purpose of generating public access water from the humidity on the air. The towers would be self-sufficient and embedded in the community at a distance from each other as to provide water access to the neighborhood around it. An atmospheric water generator is capable of producing 5000 liters of water a day, the tower design proposes to use 4 generators, producing 20,000 liters of water a day. The tower is also designed for water storage, with a capacity of 24,000 liters.

The tower is designed to serve the community in more than one way. The water generation produces the main element required for the creation of a vertical farm. One of the main reasons to produce food locally is that by doing so we can cut cost by half since transportation costs are taken out of the equation. The tower is designed to produce a variety of food products including mushrooms. All the produce in the tower are of high yield. The people working in the tower would be locals. And the first floor of the tower would serve as a market where people would get access to both food and water. The idea is to have a system that can generate in symbiosis, different ways to help the community.

The last important concept to talk about is that, the only way a hive like the one proposed would work, is if each tower works self-sufficiently. To achieve this point, the atmospheric water generators have been designed to work on solar energy which will solve all the other electric needs of the tower. The energy will be stored in a commercial tesla battery. Self-sufficiency does not only refer to energy; the farming, cleaning and selling of the food will be done by a local work force allowing for the tower to become an asset to the neighborhood developing a type of social self-sufficiency.

By offering access to clean water and cheap food, the tower is designed to lift the quality of life of the community.

“Like medicine (architecture) must move from the curative to the preventive.”

— Cedric Price, The Square Book
The Ethical Imperative

THE ETHICAL IMPERATIVE: ATMOSPHERIC WATER GENERATING AND URBAN FARM TOWERS

INTRODUCTION

Behind the proposed project is to do the least evil at all times and to do the greatest good. The main reason is to create a sustainable community. And to deal with the problem of the lack of water in the proposed community. The solution to this problem is to harness the power of the sun to generate water. This is possible through a system of solar panels that can be mounted on the roof of the buildings. The water generated can be stored in a large tank and used for various purposes such as irrigation, drinking, and bathing. This system can also be used to generate electricity using solar panels. This will not only provide water and electricity to the community, but also reduce their dependence on fossil fuels. This project also aims to improve the quality of life of the residents by providing them with fresh and clean water and electricity. The project is designed to be self-sufficient, making it a model for sustainable urban development. It is hoped that this project will inspire others to adopt sustainable practices and improve the quality of life of their communities.
This project presents an ongoing body of work that aims to disrupt tendencies within computationally design practices as well as highly standardized modes of sustainable design production. The project adopts a painterly attitude and workflow towards digital and material computation. In Swiss art historian Heinrich Wolfflin’s seminal work, Principles of Art History: The Problem of the Development of Style in Later Art, he describes a radical shift in the development of European representational art styles between the Late-Renaissance and the Baroque. Specifically, he describes a conceptual and material shift from the linear to the painterly. Wolfflin’s definition of the painterly, emerging in the early Baroque, alludes to ideas of limitlessness and merging, standing in direct opposition to the tangibility and solidity of the Late Renaissance linear style. Wolfflin describes the painterly as limitless, receding, open, lacking in linear hierarchy (ambiguous part-to-whole relationships), and finally of relative clarity, in comparison to the absolute clarity found in Late-Renaissance art (Wolfflin 1915).

Thus, this ongoing body of work looks at the radical shift from the linear to the painterly within the context of computational design methodologies and digital fabrication.

The project is developed through a digital-analog workflow that moves between scavenging for natural material, 3D scanning, a computational system and resultant material constructs that exhibit painterliness through their open system logic that blurs traditional linear part-to-whole relationships. Specifically, this workflow is tested through the design of a chair that explores material assemblies in the form of reciprocal frame systems.

This project situates itself within the context of mass-customization, looking at the potential of scavenging fallen non-standard timber members from the deserts of the United Arab Emirates to produce an architectural material system. This project also references current work being produced at Architectural Association Design + Make programme (Self and Vercruysse 2017). However, from an assembly point of view, the project looks to avoid invasive approaches to the fallen timber member such as cutting and drilling. Thus, the project’s structural principles are built on the self-supporting reciprocal frame typology that requires no mechanical or subtractive connections. The criteria used while scavenging include linear dimensions, cross sectional radii, curvature along the long axis and surface friction.

Secondly, the process includes 3D scanning the found material. The 3D scanning allows for quick sorting of elements given the three of the criteria described above. Second, a custom-designed digital workflow allows for matching same sized surfaces along the timber members based on a naturally occurring male-female joint. Finally, scanning allows for the digital testing of the stability of reciprocal frames. This results in a quick assembly that is able to withstand structural loads. Within the context of the chair, a volumetric transparent resin-cast condition is designed to further avoid thrust actions.

This system is currently being developed on two different fronts. First, the digital platform and workflow is being developed as a stand-alone package that would allow for existing 3D meshes to be input, sorted, matched and assembled based on designer criteria. This would allow for the democratization of the workflow, which in turn will provide further refinement and intelligence through iteration. The second front includes working on large scale constructs that apply the theoretical framework with the workflow to produce a spatial construct, further testing the viability of the system.
The Ethical Imperative

PAINTERLY STRUCTURES

This project presents an ongoing body of work that examines design methodologies within computational design and digital fabrication. The project primarily explores and evaluates processes and challenges involved in the development of innovative design practices. Specifically, the project adopts a painterly approach towards digital and material computation, inspired by the seminal work of Heinrich Wolfflin in his book, *Principles of Art History: The Problem of the Development of Style in Later Art*.

Wolfflin describes a significant shift in art styles between the Late Renaissance and Baroque periods. Specifically, he identifies a conceptual and material transition from linear to painterly techniques. The painterly style is characterized by its limitless, open, and ambiguous part-to-whole relationships, which contrasted with the linear style's emphasis on tangibility and solidity. Wolfflin's painterly concept alludes to ideas of limitlessness and merging, standing in direct opposition to the tangible and solid nature of the Late Renaissance style.

This ongoing body of work looks at the radical shift from linear to painterly methodologies within the context of computational design and digital fabrication.

The project is developed through a digital-analog workflow that moves between scavenging for natural material, 3D scanning, computational systems, and resultant material constructs that exhibit painterliness through their open system logic. The workflow is tested through the design of a chair that explores material assemblies in the form of reciprocal frame systems.

This project is positioned within the context of mass-customization, looking at the potential of scavenging fallen non-standard timber members from the desert of the United Arab Emirates to produce an architectural material system. It references current work at the Architectural Association Design + Make programme (Self and Vercruysse 2017). However, the project looks to avoid invasive approaches to the fallen timber member such as cutting and drilling. Thus, the project's structural principles are built on the self-supporting reciprocal frame typology that requires no mechanical or subtractive connections.

Secondly, the process includes 3D scanning the found material. The 3D scanning allows for quick sorting of elements based on the criteria of linear dimensions, cross-sectional radii, and curvature along the long axis. This data enables a natural jointing system guided by a digital framework that further tests the stability of reciprocal frames. This results in a quick assembly that is able to withstand structural loads.

The system is currently being developed on two fronts. First, a digital platform is being developed as a stand-alone package that allows for existing 3D meshes to be input, sorted, matched, and assembled based on designer criteria. This would allow for the democratization of the workflow, which in turn will provide further refinement and intelligence through iteration.

Secondly, working on a large-scale construct applies the theoretical framework with the workflow to produce a spatial construct, further testing the viability of the method.

References:

Faysal Tabbarah
American University of Sharjah
Ibrahim Ibrahim
This poster brings to the forefront our responsibilities as architects to educate the public on our profession, and where better to start than in our elementary schools! Through both your local AIA Chapter and your university, opportunities to connect children and teachers with architectural professionals and design students can be made possible with a little effort that is sure to benefit all parties. This poster takes a glimpse into three creative projects and lessons that have been tried-and-true with participating third graders.

Repurpose + Reimagine:

With less and less open space in our cities, we will need to find ways to re-envision and repurpose the buildings that already exist. To encourage kids to think about the idea of repurposing while in elementary school can give them a respect for the lifecycle of materials that we encounter every day. At their age, they can begin to take responsibility for the negative impacts of trash and waste as well as the positive impacts of recycling and reuse. Learning about repurposing is a creative endeavor that is both challenging and fun for all ages. For this lesson images of everyday objects are provided so that they can be reimagined at various scales, and repurposed—even if their new purpose serves no broader function than sheer creativity.

Rhythms + Patterns:

Rhythms and patterns are fundamental aspects of architecture that we see (or do not see!) in almost every building structure. Whether it is patterns made by windows, panels, or structural columns, it is evident that they exist in countless ways throughout architecture; it is because of these aspects that architecture has been referred to as “frozen music,” (having a pace, a tempo, a beat—with layers of repetition). Perhaps nowhere are these rhythms and patterns more visible than in the facade of a building: expressed through repetitive elements, structures and patterns like windows, columns, and masonry.

In this lesson students have an opportunity to explore these concepts as they imagine the facades of a city street. How do different functions of a building affect the patterns on the outside? What would the facade of an office building look like versus the facade of an apartment building or a movie theater?

Sites + Scenes:

Sites and Scenes is a drawing activity that includes four (with the possibility of many more!) different environments that children can imagine inhabiting: a hot dry desert, a cold snowy hill, a cool, rainy forest and a warm, breezy beach. For this exercise it helped to engage in a brief discussion on building in different climates before the students were handed a scene and tasked with designing a structure specifically for that site. The discussion led children to compare clothing and accessories that one might wear in certain climates to the way things might be built in those same climates. For instance, in the wintertime we wear large puffy jackets. This may relate to the need for thick, insulated walls. In the summer, we may wear a large brimmed hat. This may encourage a large roof overhang to keep the hot sun out of the interior space. And in both rainy and warm beach climates, it’s convenient to be elevated off the ground so that we can stay dry or so that air may circulate around for cooling.
The Ethical Imperative

RHYTHMS + PATTERNS
Rhythms and patterns are fundamental aspects of architecture that we see (or do not see!) in almost every building structure. Whether its patterns made by windows, panels, or structural columns, it is evident that they exist in countless ways throughout architecture. It is because of these aspects that architecture has been referred to as “frozen music,” having a pace, a tempo, a beat—with layers of repetition. Perhaps nowhere are these rhythms and patterns more visible than in the facade of a building. The “frozen music” of architecture is expressed through repetitive elements, structures and patterns like windows, columns, and masonry. Through this lesson students have an opportunity to explore these concepts as they imagine the facades of a city street. They can think about how different functions or programs of a building would affect the patterns on the outside: What would the facade of an office building look like versus the facade of an apartment building or a movie theater?

SITES + SCENES
Sites and Scenes is a drawing activity that includes four (with the possibility of many more!) different environments that children can imagine inhabiting: a hot dry desert, a cold snowy hill, a cool, rainy forest and a warm, breezy beach. For this exercise it helped to engage in a brief discussion on building in different climates before the students were handed a scene and tasked with designing a structure specifically for that site. The discussion led children to compare clothing and accessories that one might wear in certain climates to the way things might be built in those same climates. For instance, in the winter we wear thick, insulated clothes. This may relate to the need for thick, insulated walls. In the summer, we may wear a large brimmed hat. This may encourage a large roof overhang to keep the hot sun out of the interior space. And in both rainy and warm beach climates, it’s certainly convenient to be elevated off the ground so that we can stay dry or so that an easy circulation around the house is kept cool.

REPURPOSE + REIMAGINE
Repurposing is not only a sustainable trend in the architecture and design industry but an inevitability in our future as we continue to manufacture and build. The urban condition, particularly, points in this direction. With less and less open space in our cities, we will need to find ways to re-envision and repurpose the buildings that already exist. To encourage kids to think about the idea of repurposing, while in elementary school can give them a request for the life-cycle of materials that we encounter every day. At their age, they can begin to take responsibility for the negative impacts of trash and waste as well as the positive impacts of recycling and reuse. Learning about repurposing is a creative endeavor that is both challenging and fun for all ages! In the student projects shown, the images of everyday objects are reimagined at various scales, and repurposed even if their new purpose serves no broader function than sheer creativity.

ARCHITECTURE + KIDS
generating creative design lessons that introduce architecture to kids
De-Anthropocentrizing Architecture: Rewriting Filarete's Golden Book

JESSE RAFeIRO
Carleton University

Anthropocentrism is a biased construct which takes for granted a privileged and central status of the human species in the universe of things. This ideology in the West was born from ideas in Ancient Greece and later adopted into Christian theology to maintain that the world was made by a divine order for humanity. Anthropocentrism, though masked by emerging ecologically sensitive discourses continues to prevail in human practices today. The tragic consequence of this mentality has led scientists to propose a new geological epic: the Anthropocene. This epic, instigated by human centric activity challenges the survival of life on earth with issues such as harsher climatic conditions, mass pollution as well as severe biodiversity reduction globally. Awareness of the effects of our actions across time and space poses profound ethical revisions for how our species will conceive of itself in the future.

In response, this speculative work attempts a rewriting against Anthropocentric biases from within the discipline of architecture through a fictitious dialogue with the early Renaissance wherein these ideas first emerged as written text. The speculates on an alternative mindset that explores the possibility of thinking beyond the world as a resource “for us” and towards a world of intrinsic value “in-itself”. Such attempts appear within the discourse of a series of emerging philosophical positions grouped within a movement known as speculative realism which will serve as the grounding of the positions in this work. Using Filarete’s Libro Architettonico as a point of departure, the work selectively manipulates the 15th Century treatise through a series of additions and subtractions to rephrase the writing within the context and challenges of the 21st century. A series of drawings illustrates the ideas of the text using objects, landscapes and characters found within the original facsimile. Following the original structure of Filarete’s text, the story begins with an ethical cosmological re-grounding followed by a description of the site of Sforzinda within a hypothetical Anthropocene context.

Written between 1461-63, the Libro Architettonico is the first explicitly architectural treatise written as a fictional narrative in the Western tradition. Filarete’s ideal city was the first of the Renaissance; leading subsequently to other ideal cities such as More’s Utopia, written half a century later. Filarete’s ideal, circular planned city was meant to disclose an ideal Christian Renaissance society in harmony with a divine order. The narrative begins first with the reframing of the theories of Vitruvius’ 1st Century BC De Architectura into Christian myth to ground the ethical foundations of the work. The narrative then follows with a demonstration of these ideals through the founding of city of Sforzinda. In the text, Filarete reveals that the city of Sforzinda is based on principles adopted from the mythical city of Plusiapolis discovered in a hidden Golden Book. It is within this same spirit that this series of language interventions rediscovers the ethical implications of storytelling in Filarete’s work.
DE-ANTHROPO-CENTRIZING ARCHITECTURE: REWRITING FILARETE’S GOLDEN BOOK

INTRODUCTION

Anthropocentrism, a view that oversimplifies the way humans perceive the world, has roots that can be traced back to the idea that humankind was the center of the universe. This perspective, which is still evident today, can be seen in the way architecture is often designed around human needs and desires. However, the idea of de-anthropocentrizing architecture would involve reevaluating our perspective and considering the impact our designs have on the natural world. This approach could lead to more sustainable and ethical building practices.

I. ORIGINS OF MAN

Architecture is often seen as a reflection of a society’s values and beliefs. In ancient times, human culture and craftsmanship were guided by religious practices and the importance of spirituality. This is evident in the design and construction of temples and other religious buildings.

II. ORIGINS AND PURPOSES OF TEMPLES

Temples were not only places of worship but also served as religious and social hubs. They were often built close to other important structures like theaters and markets, creating a central place for people to gather. The design of temples reflected the culture and beliefs of the time, often incorporating symbolic elements and patterns.

III. ORIGINS OF BUILDING

Building practices have evolved over time, with advancements in technology and materials leading to more efficient and innovative designs. The introduction of new materials and construction methods has allowed for the creation of larger and more complex structures. This has had a significant impact on the way we build and live.

IV. MAN AS A SIMILE FOR BUILDING

The idea of a building being a living entity is not new. In ancient times, buildings were often designed to mimic natural forms or to symbolize the beauty and power of the gods. This concept has been revisited in modern architecture, with designs that blend with the environment and create a harmonious relationship between the building and its surroundings.

V. SFORZINDA IN THE ANTHROPOCENE

The SFORZINDA project is an example of how architecture can serve as a tool for environmental preservation. By designing buildings that are in harmony with the natural environment, we can reduce our impact on the planet and work towards a more sustainable future. This approach not only benefits the environment but also enhances the quality of life for those who live in the buildings.
INTRODUCTION | This paper and poster presentation showcase a new research-driven interface and design tool that could transform architectural education. The process uses mixed-methods research design to investigate ways of integrating a hybrid digital-analogue hardware protocol platform known as No Keyboard, No Mouse (NK-NM) into the design studio context. The study examines the influence of the NK-NM platform on pedagogy, research integration, user experience, and aesthetics. It also documents its initial impact as part of a simulation-based feedback loop to iteratively explicate design artifacts. NK-NM advances emerging design tool development research by extending and reshaping design as a thinking medium rather than merely as a process. By emphasizing design strategy and pedagogical planning, this study produced unexpected and unforeseeable outcomes as well as demonstrated enhanced creativity in non-designers, and both novice and expert designers.

METHOD | As Sylvia Lavin states in her interview with the Los Angeles Forum, “Increasingly larger amounts of creative resources are being put into producing new tools and concepts that are designed not to make things but, to amplify the creative capacities of others” (Lavin, 2015). It is within this capacity that NK-NM builds its experimental foundation. By applying techniques that blur the boundaries of current computational design processes, NK-NM narrows the boundaries between user experience and the design artifact. NK-NM combines “master-designer” knowledge with qualities that can be tailored to define design parameters, rules, and controls. NK-NM uses advanced digital and physical computational techniques to augment the hierarchical relationship between an experienced designer (master-designer) and those with limited design background (second-designer) to redefine the concept of design instruction. NK-NM is necessarily interactive to influence iterative and reconfigurable design solutions directly, that in turn, results in empowering the team to calibrate and assess lesson plans.

PROCESS | The NK-NM platform includes a combination of software and hardware. The NK-NM-Software is a combination of scripts and modeling techniques, developed by the “master-designer” to bridge between programming platforms (Grasshopper 3D, Processing, and Python), 3D modeling software (Rhino 3D), and physical and digital design customized interfaces. The “software” acts as a design control system to ensure the legibility and cohesion of the design outcomes. The NK-NM-Hardware is a physical and tangible input device that enables users from non-designers to professional designers to freely interface with the NK-NM-Software.

OUTCOMES | The advantage of the NK-NM platform over existing design processes is its inherent potential to harness parametric customization from the software/hardware perspective. NK-NM brings the freedom and the possibility of design to users who have little or no design background as well as those who have advanced design skills. NK-NM ensures the precision and functionality of the design through a “controlled” and flexible design process. Application of NK-NM can occur at any design phase or process; from the schematic/conceptual design to construction detail studies to integrated project delivery. The hybridized NK-NM platform has demonstrated a new way of interacting with the design artifacts that has positively influenced the physical interface of the designers by coupling the interface with directed design environment interaction. These tangible results along with the immediacy of having the digital outcome have shown that the “second-designer” designs more instinctively.

INTRODUCTION
This paper and poster presentation showcase a new research-driven interface and design tool that could transform architectural education. The process uses mixed-methods research design to investigate ways of integrating a hybrid digital-analog hardware protocol platform known as No Keyboard, No Mouse (NK/NM) into the design studio context. The study examines the effects of this protocol on pedagogy, research integration, user experience, and aesthetics. It also documents its initial impact as part of a simulation-based feedback loop to refine and evaluate design artifacts.

NK/NM advances emerging design tool development research by extending and rethinking design as an iterative medium rather than merely a process. By emphasizing design strategy and decision-making, this paper details unexpected and unrepeatable outcomes as well as demonstrated enhanced creativity by non-designers, mid-level novices and expert designers.

METHOD
At Sylvia Lavin's site in her interview with the Los Angeles Forum, "increasingly larger amounts of creative resources are being put into producing new tools and concepts that are designed not to make things but to modify the creative capacities of others..." (Lavin, 2015). It is within this capacity that NK/NM builds on experimental foundation. By deploying techniques that blur the boundaries of current digital design, NK/NM allows for an open-ended and algorithmic approach to design. Converging creative design strategies, this study defines design parameters, rules, and controls. NK/NM uses advanced digital and physical computational techniques to augment the hierarchical relationship between an experienced designer (master-designer) and those with limited design background (second designers) to redefine the concept of design instruction. NK/NM is necessarily interactive to influence iterative and reconfigurable design solutions directly, the in turn results in empowering the team to calibrate and assess lesson plans.

OUTCOMES
The advantage of the NK/NM platform over existing design processes lies in its inherent potential to harness parametric customization from the software/hardware perspective. NK/NM brings the freedom and the possibility of design to users who have little or no design background as well as those who have advanced design skills. NK/NM ensures the precision and functionality of the design through a "controlled" and flexible design process. Application of NK/NM can occur at any design phase or process: from the schematic/conceptual design to construction detail study to integrated project team work. Furthermore, NK/NM allows for increased involvement of the user in the design process. This user interface with directed design environment interaction. These tangible results along with the immediacy of having the digital outcome have shown that the "second-designer" designs more instinctively.

REFERENCES
As we strive to create things of lasting value and usefulness, designers must become masters in the art of transformation. The studio challenged students to investigate the concept of Autonomous and the Culture of Reuse. Students explored to move beyond a simple reapplication, and to transform the selection into an entirely new object. The design process is shifted from a static functional exercise to a pathway of discovering new possibilities; from tectonic contingencies to the autonomy possible in figurative form making. With computational logic, we traverse a pathway of discovery to arrive at a different place, and an associative process is born. The concept of the studio focused on fostering computational design thinking and integrating algorithmic design into the creative process.

Hypothetically, Amazon founder Jeff Bezos has asked the studio to design a prototype drone delivery fulfillment center for their new and controversial delivery system: Amazon Prime Air. This new building type is almost without precedent. Amazon has already filed several patents for Drone Maintenance Networks. Additionally, the FAA and NASA are currently studying unmanned aircraft systems and traffic management in current air space. Inevitably, students faced unfamiliar territory, which could be an exciting new opportunity.

Within the scope of design for Amazon Fulfillment Center, there are two distinctive parts of the design problem.

First, the project provided a design solution for transforming / reinventing a defective grain elevator. The grain elevator is a complex agricultural facility which is often a large and tall structure. Amazon fulfillment centers plan to upcycle out-of-service grain elevators in nationwide locations, and the proposals are the catalyst for Amazon’s innovative endeavor. The project should be developed with an integrative approach to the innovative use of steel as space, structure, and skin.

Second, the project was responsible for designing the receiving kiosk for Amazon Prime Air. The kiosk achieves a safe and efficient package pickup and drop off location for Amazon customers.

The concept should answer these questions:
1. How does the Drone Delivery Center perform on the specific site?
2. What logistical solution will your concept provide for Amazon Prime Air (distribution methods)?
3. What is the form logic?
4. How does the inventory flow work in your design?
5. How does your concept translate into a specific architectural/structural solution?
166

THE CULTURE OF REUSE

As we strive to create things of lasting value and usefulness, designers must become masters in the art of transformation. The studio challenged students to investigate the concept of Autonomy and the Culture of Reuse. Students explored to move beyond a simple re-appropriation, and to transform the selection into an entirely new object. The design process is driven from a top-down, functional exercise to a pathway of discovering new possibilities from technologically constrained to the autonomy possible in innovative form-making. With computational logic, we traverse a pathway of discovery to arrive at a different place, and an associative process is born. The concept of the studio focused on fusing computational design thinking and emerging algorithmic design into the creative process. Hypothetically, Amazon founder Jeff Bezos has asked the studio to design a post-apocalyptic delivery system, or the new revolutionary delivery system, Amazon Prime Air. This new building type is almost without precedent. Amazon has already filed several patents for Drone Maintenance Networks. Additionally, the FAA and NADCA are currently studying unmanned aircraft systems and traffic management in current airspace. Irrespective, students faced uncharted territory, which could be an exciting new opportunity.

Within the scope of design for Amazon Fulfillment Centers, there are two distinctive parts of the design problem: First, the project provided a design solution for transforming a non-functional grain elevator into a new building type. The grain elevator is a complex agricultural facility which is often a large and tall structure. Amazon fulfillment centers plan to open some of these new facilities as part of a nationwide network, and the proposals are the subject for Amazon’s innovative endeavors. The project should be developed with an integrative approach to the innovative use of steel space, structure, and skin.

Second, the project was responsible for designing the receiving dock for Amazon Prime Air. The dock achieves a safe and efficient package pickup and drop off solution for Amazon customers.

The concept should answer these questions:

- How does the Drone Delivery Center perform on the specific site?
- What topological solution will you implement for Amazon Prime Air (distribution methods)?
- What is the form logic?
- How does the inventory flow work in your design?
- How does your concept translate into a specific architectural structural solution?

Both the concept and structure are critical in the design process. This project is-driven by computational design thinking, and the process utilizes computational algorithmic design and emerging algorithmic design into the creative process. Hypothetically, Amazon founder Jeff Bezos has asked the studio to design a post-apocalyptic delivery system, or the new revolutionary delivery system, Amazon Prime Air. This new building type is almost without precedent. Amazon has already filed several patents for Drone Maintenance Networks. Additionally, the FAA and NADCA are currently studying unmanned aircraft systems and traffic management in current airspace. Irrespective, students faced uncharted territory, which could be an exciting new opportunity.
How can participatory design strategies and community-engaged construction support creative and critical collaboration? How can we ensure that the project’s scope and objectives are appropriately aligned with the community, especially when students’ short-lived, limited roots and commitment can be vulnerable in the semester timeframe of a project? These are questions this design build studio, a collaboration between students, faculty, stakeholders, and community volunteers contemplates. The Maring-Hunt Library Community Garden Master Plan, its improvement and expansion, and a series of Garden Pavilions and Nature Play Pockets were designed and developed as useful spaces to address food insecurity in a USDA-designated food desert, cultivate community interaction and social activity, and provide learning opportunities for elementary school students, library patrons, and neighborhood families. The Community Garden is in a food desert, located on the Southside of our small city, isolated and removed from the economic prosperity of the collegiate campus. As cities face the environmental, economic, and social challenges of the 21st century, including hunger, diabetes, and dependence on global industrial food systems, local food production will be more and more important for building food security.

The master plan includes a trio of pavilions developed around a large community garden overseen by the neighborhood organization and public library. 1. The Gateway to Growing Gardeners’ Pavilion, which provides shade, seating, tool storage, and accessible garden beds, and a sand and water Nature Play Pocket was designed and built by students and community in an immersive learning studio. 2. A Market/Education Pavilion to house a community market for the garden growers and an outdoor learning space for the afterschool program for elementary children, is currently under construction by students this fall. A small outdoor kitchen and food preparation demonstration area for nutritional education and programming is part of this project. 3. A fenced-in Educational Pavilion and Children’s Garden for Southview Elementary student is the third layer. This project is funded through a LOWES Neighborhood Revitalization Grant, a collaboration with four local partners including Habitat for Humanity, Ross Community Center, Boys and Girls Club, and Muncie Mission, an emergency shelter for homeless men.

Growing food connects people to their environment and to their neighbors, nurturing trust and relationships that tie together social, economic, and ecological systems. Many non-profit organizations garden as a deliberate strategy to feed people who lack regular access to fresh, nutritious food. There is a much larger informal side of food security in this community garden, as the subsidized senior living apartment dwellers in the adaptive reuse of an inner city High School bordering the site exemplify. The people in this community are a repository of vast knowledge and our effort to harness the energies of citizens and community organizations is a solution based on understanding the creative and productive people. In the design studio, a student’s most substantial gains are not achieved through the final product’s construction, but in the process and the journey to envision and create an intervention that is impactful for the community. The Maring-Hunt Library Community Garden greenspace with its pavilions, gardens, paths, bio-swale, and nature play pockets is being developed as an anchor in the neighborhood with the potential to turn a food desert into a food oasis, providing an asset motivating children and families to get outdoors, grow and learn and engage in healthy activity together.
Full Circle: Working Towards a Network of Social Infrastructures in the City

JULIA JAMROZIK
University At Buffalo, SUNY

Working in Amsterdam after WWII Aldo van Eyck recognized the potential of play apparatus to breathe new life into the forgotten spaces of the city. The architect called for a transformation of the urban environment into a network of nodes of play areas of various scales ultimately turning the city into a playground. Thinking of the experience and the needs of the child in the city, van Eyck was also very conscious of the need of his play-structures to contribute to the urban landscape in general and to be open-ended and "real" enough to add to the city even once the child has gone to bed.

Like post-WWII Amsterdam, Buffalo is a city that finds itself with a surplus of empty lots where buildings once stood. In 2016, CEPA Gallery held a competition for public artworks to temporarily appropriate and occupy a series of empty lots in Buffalo's Westside neighborhood.

Selected through this competition, "Full Circle" is an interactive installation for all ages that playfully rotates a typical linear swing-set to alter and expand its experience, questioning the basic relationships between people in space and to one another. By bringing a piece of playground equipment together with the charged spatial arrangement of political round-tables and corporate boardrooms, the installation takes a playful construct and positions it in the adult-world.

Aiming to create socially conscious dialogue, the project is positioned where diverse Buffalo communities intersect and is adjacent to International School #45 whose student body represents 70 countries and 44 languages. The installation was supported by a vigorous grassroots campaign to engage the teachers, parents, administrators, city council members, community activists, and neighbors to take active ownership of it.

"Full Circle" has become an identifiable spot within the neighborhood, becoming a small-scale meeting place for children and adults alike. In a low-income community with few maintained green-spaces and little public infrastructure, it is a small but significant gesture.

Thinking of "Full Circle" as a node in a wider network of potential playspaces within the city, one can imagine a series of social infrastructures throughout Buffalo that could contribute in different ways to the making of community through small-scale engagement. Providing spaces where people from different walks of life can come together and share the simple act of play can be one way of taking advantage of the gaps in our city fabrics as van Eyck did in Amsterdam.
Working in Amsterdam after WWII, Aldo van Eyck recognized the potential of play apparatus to breathe new life into the forgotten spaces of the city. The architect called for a transformation from urban environment into a network of nodes of play areas of various scales ultimately turning the city into a playground. Thinking of the experience and the needs of the child in the city, van Eyck was also very conscious of the need of his play structures to contribute to the urban landscape in general and to be experienced and “real” enough to add to the city even once the child has gone to bed.

Like post-WWII Amsterdam, Buffalo is a city that finds itself with a surplus of empty lots where buildings once stood. In 2016, CEPA Gallery held a competition for public artworks to temporarily occupy a series of empty lots in Buffalo’s Lower Westside neighborhood. Selected through this competition, “Full Circle” is an interactive installation for all ages that playfully rotates a typical linear swing-set to alter and expand its experience, questioning the basic relationships between people in space and to one another. By bringing a piece of playground equipment together with the charged spatial arrangement of political round-tables and corporate boardrooms, the installation takes a playful construct and positions it in the adult-world.

Aiming to create socially conscious dialogue, the project is positioned where eleven Buffalo School Board members and other city council members represent 70 countries and 44 languages. The installation was supported by a vigorous grassroots campaign to engage the teachers, parents, administrators, city council members, community activists, and neighbors to take active ownership of it.

“Full Circle” has become an identifiable spot within the neighborhood, becoming a small-scale meeting place for children and adults alike. In a low-income community with few maintained green spaces and little public infrastructure, it is a small but significant gesture.

Thinking of “Full Circle” as a node in a wider network of potential playspaces within the city, one can imagine a series of social infrastructures throughout Buffalo that could contribute in different ways to the making of community through small-scale engagement. Providing spaces where people from different walks of life can come together and share the simple act of play can be one way of taking advantage of the gaps in our city fabric as van Eyck did in Amsterdam.
Potential North: Anthropogenic Infrastructure in the Extractive Territory

DANIEL NEIL ASPINALL
University Affiliation

Greenland may be the next petro-territory. Granted political autonomy from Denmark in 2009, Greenland saw its financial subsidy— which supported resource and infrastructural networks— capped. In response to its growing need to address economic concerns, Greenland is actively exploiting its natural resources, opening mineral mines and promoting oil and gas exploration. A pipeline would be probable infrastructure to transport oil down the coast from the ice-present waters in the north: this pipeline serves as the site for Potential North.

Of the territory’s sparse towns and villages, those in the north were most dependent on subsidy for resource networks. Once self-sufficient— living off the land through sustenance hunting and resource gathering— modernization of these towns has introduced contemporary urban elements. These northern settlements now exist in a conflicted state, between a traditional lifestyle and the globally homogenized existence, but without economic viability. Many rely on fishing exports, but are looking for new economic activities— petroleum is a potential future.

Potential North challenges the after-the-fact architectural reaction to infrastructural opportunism by introducing holistic interventions along an oil pipeline developed at the outset of extraction. This project aims not to condemn or suggest alternatives to future petroleum extraction, but presents robust architectural solutions which makes better an uncomfortable inevitability— taking the pipeline as site.

Infrastructure, particularly extractive infrastructure— comprised of both physical ecologies and logistic networks— exists at the intersection of the Humanity / Nature duality, an ever-evolving relationship of human’s understanding of it’s environment. Urban expansion continually places infrastructure systems in opposition to Natural forces, resulting in a shift of design power from architects and urbanists to engineers. These engineered infrastructures prioritize the pragmatic and specific, often negating social or cultural influences. This project returns that power to the architect by siting opportunities for intervention, synthesizing the technical with the cultural, adding richness in the banal.

The Arctic presents a unique background for the exploration of cultured infrastructure as Arctic oil and gas reserves sit at the edge of extractive feasibility. These extractive frontiers revive certain aspects of American Wild West frontierism— technological ingenuity, societal freedoms, and environmental opportunism— in precipitation of spatial products reacting to their unique environment. These sites offer not only suggestions towards a new Arctic vernacular, but provide an exploratory medium at the intersection of architecture and infrastructure.

Extractive infrastructure works at the scale of global capital, it intersects both Humanity and Nature, yet rarely promotes either in a productive way— solely serving the far-off economic entities of resource consumption. In a territory caught between economic autonomy and natural and cultural exploitation, the seemingly inevitable pipeline infrastructure must be reconsidered to address local concerns. Potential North examines how infrastructure may be utilized to serve more than one public— considering a more holistic design which recognizes the expanded ecological, political, economic and cultural environmental context— to speculate on opportunities producing tangible benefits to the species existing at the interface.
POTENTIAL NORTH
Anthropogenic Infrastructure in the Extractive Territory

Throughout its active territory, a network traversing the remote hinterlands. At the line terminus, the town of Sisimiut water, the pipeline serves as a linear network, a potential north, conflicted state, between a traditional lifestyle and the globally to national progress. These northern settlements now exist in a to maintain their traditional way of life, and, those is the south who conflict exists between these northern villages, who are proud to of these towns has introduced contemporary urban elements. North have been most dependent on this subsidy for maintaining resources– opening mineral mines and actively promoting oil and of Greenland’s many sparse towns and villages, those in the important cultural knowledge passed on from elder hunters to the.

Climate change only complicates the situation– the thinning of herd patterns.

In addition to providing a refuge in new, unprecedented weather patterns, the climate

grow fruits and vegetables, the thermal and conditions too cold to naturally

On a bedrock island with no arable land

has the ability to change the adjacent

The pipeline, an intense emitter of energy, supplies a high volume of iceberg traffic. As such, the pipeline’s northern crossing point at Disko

Iceberg Travel Lanes

Eider Duck Roosting + Summer Activity

Down Collection + Production

Eider Duck Sheds

Eider Duck Sheds

Snow Clearing / Thermal Radiation + Cold Storage

thermal shell, enclosed are small

wood interiors and a visible, protective

field and connected to the pipeline– of huts are deployed along the line.

In the presence of new, natural, but not entirely constructed

interior for passive human occupation in

field that roosts Eider Ducks in the

collected and lucrative on a small scale.

Shed naturally– one of the rarest to be

shed naturally– one of the rarest to be

scientific observation and evident on the

reeds, lichen, mollusks, and host ducks

either. It remains to weather: grow moss, natural, but not entirely constructed

interior for passive human occupation in

field that roosts Eider Ducks in the

collected and lucrative on a small scale.

Shed naturally– one of the rarest to be

shed naturally– one of the rarest to be

scientific observation and evident on the

reeds, lichen, mollusks, and host ducks

either. It remains to weather: grow moss,
Bouyant Rings

YIM GLORIA JEW
Academy of Art University

SAINAN BI
Academy of Art University

Located in the western Hong Kong sea, this Research, Rescue and Rehab facility are for the Chinese White Dolphins, an endangered species. Due to the city’s rapid growth of population and economics, Hong Kong has been reclaiming land from the sea in every single available instance. Habitats of marine life are disturbed and compromised. This project creates a floating inhabitable architecture with an approach of “search and rescue”. The minimal footprint of rings and mobile units, “pods”, are the infrastructure. The primary ring includes a maritime laboratory, the rehab pool and temporary shelter for dolphins. Smaller mobile laboratory pods are deployed to gather data for research and return to the laboratory as “plug-ins”. Laboratory modules can be added to the ring. Rescue vessels tether the injured or stranded dolphins and guide them into the ring of the rehab pool for observation and healing. The outer ring is a floating arena for the engaged learning public who act as stewards of the environment. All of these mobile units act and become an active and positive agent in Hong Kong’s marine ecosystem.

Material and Construction: The outer shell of the laboratory and vessels are made of Reinforced Carbon-Carbon (RCC) panels. These exterior panels are attached to a steel frame rib cage structure. The insulation panels are made of Fibrous Refractory Composite Insulation (FRCI). The interior panels are pre-molded Carbon Fiber Reinforced Polymer (CFRP). The fabrication of the panels both for the exterior and the interior allows for its modularity in production and systematic assembly. The laboratory unit and the pods are then transported to the sea.
Located in the western Hong Kong sea, this research, rescue, and rehab facility is for the Chinese White Dolphins, an endangered species. Due to the city’s rapid growth of population and economics, Hong Kong has been reclaiming land from the sea in every available instance. Habitats of marine life are disturbed and compromised. This project creates a floating, inhabitable architecture with an approach of “research and rescue.” The minimal footprint of rings and mobile units, “pods,” are the infrastructure. The primary ring includes a maritime laboratory, the rehab pool, and temporary shelter for dolphins. Smaller mobile laboratory pods are deployed to gather data for research and return to the laboratory as “plug-in.” Laboratory modules can be added to the ring. Rescue vessels transport the injured or stranded dolphins and guide them into the ring of the rehab pool for observation and healing. The outer ring is a floating arena for the engaged learning public who act as stewards of the environment. All of these mobile units act and become an active and positive agent in Hong Kong’s marine ecosystem.

Material and Construction: The outer shell of the laboratory and vessels are made of Reinforced Carbon-Carbon (RCC) panels. These exterior panels are attached to a steel frame rib-cage structure. The insulation panels are made of Fibrous Refractory Composite Insulation (FRCI). The interior panels are pre-molded Carbon Fiber Reinforced Polymer (CFRP). The fabrication of the panels both for the exterior and the interior allows for its modularity in production and systematic assembly. The laboratory unit and the pods are then transported to the sea.