
178 DIGITAL APTITUDES + OTHER OPENINGS

Bootstrapping a Computational Discourse

MAYA PRZYBYLSKI
University of Waterloo

Computer Science is no more about computers than
astronomy is about telescopes. Edsger Dijkstra1

INTRODUCTION

Bootstrapping: a self-sustaining process that pro-
ceeds without external help

System Stalker Lab (SSL) is an introductory explo-
ration of design computing, aiming to instill aware-
ness of the structures, processes, and opportunities
necessary to develop a design practice inclusive of
computational strategies and techniques. SSL is of-
fered as a third year undergraduate option studio
at the School of Architecture at the University of
Waterloo. The students participating in the studio
are self-selected and enjoy a favorable class size
of around twenty students, allowing for an inten-
sive, focused semester. It is assumed that students
coming into the studio do not have any computer
code writing or reading experience.

COMPUTING CONTEXT

The goal of SSL is to seed a computationally-ori-
ented design culture in the school by clarifying and
speculating on the opportunities existing within
computing in relation to architectural design. Cen-
tral to this potential is the architect’s relationship to
processing and, in turn, processing’s relationship
with computing.

Andrew Kudless has identified processing as a cen-
tral skill of the architect.2 Architects’ activities are
characterized by creating sets of instructions to be
used by others. In the creation of these instruc-

tional sets, the designer organizes diverse sets
of knowledge into a comprehensive collection of
procedures that (coupled with intensive efforts by
related disciplines) result in a physical construct.
Data collected across numerous dimensions of a
project, such as site, program, materials, culture
and budget, are transformed into a clear set of
drawings, models and specifications that comprise
this instructional set that others will use. In such
a context, the term processing is not dissimilar to
what we commonly mean by the term design, but
perhaps recasts it with more emphasis on the anal-
ysis, parsing and filtering of information in order to
uncover opportunity for invention, intervention and
mobilization.

Computing might be considered to be the automa-
tion of processing. Dr. Peter J. Denning, an Ameri-
can computer scientist known for his expertise in
communicating computing principles, states that
“the fundamental question underlying all of com-
puting is, What can be (efficiently) automated.”3
This question can be naturally extended to include
the challenges of implementing, analyzing and ap-
plying these automated processes. In the archi-
tectural context there are numerous processes that
can benefit from automation. The scope of such au-
tomation is wide. At one end, there are automated
processes, such as a door schedule generator with-
in a Building Information Modeler, that speed up fa-
miliar (and often mundane) tasks; at the other are
powerful exploratory processes, such as environ-
mental performance simulators and evolutionary
algorithms, that afford new levels of engagement
and expose new potentials.

179BOOTSTRAPPING A COMPUTATIONAL DISCOURSE

In order to fully engage with these deeper uses of
automation, designers must be capable of author-
ing their own tools. Such capacity has been charac-
terized as allowing engagement with computation
rather than (mere) computerization.4 Computeriza-
tion implies a view of the computer as simply an
advanced tool that enables, through the use of out-
of-the-box software, the digitization of that what
is already achievable and familiar through the use
of a limited, predetermined set of procedures; in
contrast, design computation expands the relation-
ship designers have with the machine, whereby
designers engage with the underlying principles
of the computer’s automating capabilities in order
to explore formal and organizational strategies by
way of processing.

Implied in the description of processing is the in-
herent complexity of the architectural problem
space, only amplified by increasing access to
seemingly relevant information. Architectural prob-
lems, regardless of scale, can be thought of as ex-
isting within ecologies of multilateral interactions
between physical, virtual, political, cultural and
technical agents. Unfortunately, our human ability
to manage these increasingly complex networks of
causal relationships is limited, and complexity can
become overwhelming and disabling for the de-
signer. To combat such inhibition, abstraction can
be used to make the problem more manageable
through a process of reduction; but such filtering,
efficacious as it may be, runs the risk of losing the
essence of the problem at hand.

In his thesis work entitled Design Exploration
through Bidirectional Modeling of Constraints, Axel
Kilian points to the potentials of computing to over-
come this barrier through associative modelling.5
Starting with an abstracted basic model, the design-
er can incrementally add behaviors and relation-
ships between agents in the project. The designer
defines the nature and behaviors of parameterized
relationships, and the computer manages their in-
teractions, thereby overcoming the human limits of
managing complex causal chains (Figure 1). The
computational designer is able to abstract a problem
for initial action and then, relying on the machine as
an automatic accountant, incrementally rebuild the
lost complexity thereby allowing the original rich-
ness of the problem space to be maintained.

THE BOOTSTRAPS

It is within the context of this discourse that SSL
operates. SSL focuses on the investigation and ex-
ploration of the structures, processes and opportu-
nities central to design computing. Such a practice
requires that designers expand their notion of digi-
tal methodologies to include the fundamental para-
digms of computer science. At the core of such
a practice is close attention to the organization of
information and the use of rule-based logical pro-
cesses to automate (or compute) in a meaningful
way. A long view is taken, where it is hoped that
students leave the studio with a foundation, or a
set of bootstraps, of computing literacy and best
practices with which they are able to pull together

Figure 1. Parameterization seeks to formulate the architectural project in such a way that the relationships between
elements remain active, or influential throughout the process. The most common form of parametric design occurs at
the level of geometry – often referred to as associative geometry. The example show here outlines a simple parametric
relationship where a parameter, attribute, of one object – namely the diameter of each circle is related directly to a second
parameter – the distance from the circles’ centers to the attractor point.

180 DIGITAL APTITUDES + OTHER OPENINGS

their own design practice – to which computation
can now contribute.

Owing to the fact that SSL is delivered in a studio
environment and not simply as an elective, the lab
is able not only deliver the bootstraps but also to
test what opportunities emerge from pulling up on
them. On the one hand, introduction to and op-
eration within an unfamiliar domain such as design
computing requires a commitment to skills-based
instruction where students can learn the concep-
tual and technical frameworks of the discipline. On
the other hand, the traditions of the design studio
require that students engage in their projects in
a critical, robust and rigorous manner. To accom-
modate both of these imperatives the course is di-
vided into two phases: The first phase focused on
encouraging the students to become computational
and the second phase testing the potentials of this
new state of being. While the continuity of these
two phases within a single studio sparks construc-
tive dialogue, the focus of this paper is on the first
phase -- the development of a workable and ex-
pandable foundation in design computing.

In order to develop these bootstraps for designers
working with computation it is instructive to once
again turn to Denning as he advocates for the de-
velopment of skills in four basic areas: algorithmic
thinking, representation, programming and design.6
Loosely, an algorithm is understood as a finite set of
well-defined procedures that translates an input into
an output. Algorithmic thinking calls on us to cali-
brate our expressions in such a way that our under-
standings and our actions are formulated in terms
of a discrete set of procedures, each step deliver-
ing an unambiguous result when executed. Repre-
sentation deals generally with how data is stored or
communicated so that it can be useful (i.e. become
information). Programming is the skill that allows
designers to express their algorithmic thinking and
representations in a specific form or syntax, result-
ing in a piece of software that causes a computer to
perform in a prescribed way. Note that, of the three
foundations noted thus far, programming is first one
that directly implies a computer. Finally, design syn-
thesizes the previous three skills into a coherent so-
lution for a specific problem addressing a particular
set of concerns. For Denning, considerations include
“practical issues” such as engineering, context, con-
straints, and performance requirements, all under-
stood from the perspective of the human user.7

The first phase of the studio, lasting five of the
term’s thirteen weeks, focuses on building a work-
able foundation in algorithmic thinking, represen-
tation and programming. The structure of this
phase consists of two parallel streams, a project
stream and a workshop stream, that converge in a
final exercise. Weekly day-long workshop sessions
immerse students in the practice of algorithmic
thinking and its requirement of discrete descrip-
tion. During the early sessions, the specifics of par-
ticular programming languages are suppressed and
pseudocode is used as an accessible language for
communicating algorithmic thinking. Pseudocode
is a high-level description of an algorithm intended
to be easily readable by humans so as to communi-
cate the key steps of the algorithmic process, while
retaining fundamental structures of programming
languages such as conditional execution and rep-
etition. Writing pseudocode is analogous to sketch-
ing in that the basic structure of a script or program
is expressed before any of the coding takes place.
Working with pseudocode simultaneously reinforc-
es two properties of algorithmic thinking: the need
to express problems and processes precisely with
no ambiguity, and the fact that algorithmic think-
ing is independent of its specific implementation as
programming in a specific language.

Only after a grounding in pseudocode do students
proceed to their implementation in a specific pro-
gramming language in order to test the algorithms
they are developing. Since students are beginning
the term with some familiarity with the Rhinoceros
3D modeling tool, it is natural to extend their tool-
set through exposure to related computing tools
such as VB/RhinoScript8 and eventually Grasshop-
per9. The following weeks’ workshops further in-
troduce students to the fundamental structures of
algorithmic thinking and script development such
as variables, logical operators, conditional execu-
tion, repetition, basic data structures such as ar-
rays, and modular organization through the use of
functions. In each case, students are introduced
to the topic using pseudocode and then proceed
to the specific implementation in VB/RhinoScript.
In addition to covering basic programming struc-
tures, later workshops introduce students to more
advanced topics such as non-deterministic execu-
tion and recursion. Each session concludes with an
in-workshop exercise where students first analyze
and then incrementally augment an existing piece
of code in order to develop more complex behavior.

181BOOTSTRAPPING A COMPUTATIONAL DISCOURSE

While some geometry is used during these work-
shops in order to visualize the outcomes of the al-
gorithms, the role of geometry is kept to a mini-
mum, using mostly primitives such as points, lines,
boxes and spheres. The resistance to involving
more complex geometry during these early stages
is twofold. First, it is assumed that students al-
ready exposed to the basics of algorithmic thinking
and its qualities of discreteness and precision will
later be able to quickly grasp the applications of
an advanced architectural geometry course. Sec-
ond, while manipulation of geometry is clearly well
suited to computational techniques, it is not neces-
sary that an architect’s relationship with computa-
tion is based only on geometry; other less explicitly
formal areas of exploration might include simula-
tion, digital fabrication, interpretation of site data,
and responsive behaviors. Given the goal of seed-
ing a computationally-oriented design culture, it is
hoped that, equipped with a solid computational
foundation, students will have the opportunity in
subsequent course offerings to address elements

in this expanding territory with more specificity and
thereby develop a critical architectural practice.

The workshop topics begin with VB/RhinoScript
and conclude with a pair of days committed to
Grasshopper.10 This ordering is deliberate. As men-
tioned earlier, expressing algorithms with pseudo-
code is analogous to sketching. Thinking through a
problem by expressing it in pseudocode is an es-
sential prerequisite, especially for novice algorith-
mic thinkers, before implementing the process in
any language, be it a VB/RhinoScript text file or a
Grasshopper definition. The pseudocode algorithm
is structurally similar to an implemented text-
based script, with the latter fleshed out by syntac-
tical specificity and pragmatic considerations such
as memory management. The programmer’s task
thus becomes one of translation; once the pseudo-
code – which is a precise, unambiguous, statement
of a set of processes – is worked out the implemen-
tation in a scripting language is relatively straight-
forward. Such a direct relationship does not hold

Figure 2. Acquire and Parse. The first phase of the studio deals with the development of students’ ability to structure
their observations parametrically. Students are challenged to stalk an existing, observable, dynamic phenomenon and
pursue its description as a parameterized system. Students need to seek out and invent associative properties within
their chosen phenomenon. Here, Susan Han and Sheida Shahi (2010) set out to pursue the relationships between the
position and orientation of hands while drumming.

49.08
47.14
54.77
47.4

54.71

48
78
97

120
136

26.09
28.46
29.84
25.96
25.45

59.63
62.20
59.59
69.96
49.65

55.50
34.65
24.30
48.52
36.11

36.03
44.81
18.58
22.59
38.93

39.60
71.67
73.04
43.22
74.28

53.96
45.00
53.00
54.57
52.08

24.10
22.83
24.15
22.28
24.02

56.34
60.91
47.47
66.95
64.88

56.74
41.30
39.56
52.99
44.62

37.32
38.27
36.28
36.29
35.42

68.57
70.46
67.30
75.79
75.38

41.66
23.44
20.74
35.93
23.57

28.70
44.32
29.47
20.99
36.04

45.49
68.91
77.06
50.95
74.29

56.77
55.33
54.25
60.28
59.58

37.96
58.37
76.00
35.46
60.65

35.96
31.40
15.62
14.38
31.10

time (s) thumbLeft(x) thumbLeft(y) thumbLeft(z) indexLeft(x) indexLeft(y) indexLeft(z) indexRight(x) indexRight(y) indexRight(z) jointLeft(x) jointLeft(y) jointLeft(z) jointRight(x) jointRight(y) jointRight(z)thumbRight(x) thumbRight(y) thumbRight(z)

FR
ON

T-
VI

EW
TO

P-
VI

EW
SI

DE
-V

IE
W

48s

BASE DOCUMENTAION WITH ALL ANNOTATIONS (SEGMENT 48s to 136s)

TEXT BASED PARSING (SEGMENT 48s-136s)

VISUAL PARSING (SEGMENT 48s to 136s)

78s 97s 120s 136s 48s 78s 97s 120s 136s

182 DIGITAL APTITUDES + OTHER OPENINGS

true for pseudocode and a Grasshopper definition.
Grasshopper is a powerful visual programming tool
that allows designers to generate complex param-
eterized models very quickly and easily. So quick-
ly and easily, in fact, that the results of a specific
implementation may be unexpected, sometimes
compelling, and thereby derail the developer from
the original intent. While these unexpected results
can undoubtedly provide opportunities for further
exploration, especially for a more seasoned devel-
oper, it is essential that novice developers engage
with the tools with a high degree of control. This
is crucial in developing an expandable foundation
where the tools are exactly that and not overpow-
ering drivers themselves. By insisting on the role
of pseudocode and its precise alignment with the
outcome of a script, it is hoped that students car-
ry this workflow forward into their explorations in
Grasshopper where control of the outcome, at least
in the beginning, is paramount.

SYSTEM STALKING: AQUIRE, PARSE, MINE &
DEPLOY

Concurrently with this series of workshops, students
develop a project where they explore the processes
and challenges of algorithmic thinking when con-
fronted with a subject that may not, at least at first
glance, be suited to such methods. The project, Pop-
ping Up | Out of Nowhere, asks students to choose
an existing, observable dynamic phenomenon and
pursue its investigation (or stalking). Some fami-
lies of phenomena include: Basic motion, where the
subject is one object moving as an assembly of com-
ponents; Series where the investigation identifies a
typology and explores its various instantiations; and
Swarms where the phenomenon is seen as many
objects moving as a whole. Once the phenomenon
is selected students investigate ways in which the
subject matter can be understood discretely. This
process of understanding is comprised of four steps
adapted from Ben Fry’s Visualizing Data.11

The first step in the project is that of acquisition.
Students are required to document their phenom-
enon. In its most basic form this documentation,
or base data, consists of a series of photographs
taken from two axes – not unlike Eadweard Muy-
bridge’s nineteenth century photographic series
studying animal locomotion. Students are encour-
aged to explore additional dimensions of their phe-
nomenon such as sound, intensity and time, as well

as other methods of documentation. At the end
of this first step students have a qualitative set of
data describing their chosen phenomenon.

The second step – parsing – involves translating
this qualitative representation into a quantitative
one. Here students are required to structure some
aspects of their qualitative set discretely. Most stu-
dents do this by identifying a set of markers and
then tracking their progression through the photo-
graphic series. Students choose a combination of ex-
plicit and implicit markers. The explicit ones, such as
a discrete point or edge, are easily identifiable within
each frame, while the implicit ones, like the center of
a swarm, require some interpretation. At the end of
this step students have two types of representation
of their phenomenon in addition to the original pho-
tographic series: the annotated version of the series
tagged with a set of attributes, and a tabular version
where each marker in each frame is expressed in
terms values such as x-/y-/z-position, color satura-
tion, or length, just to name a few (Figure 2).

The third step introduces the idea of associative
behavior or parameterization. The goal is that stu-
dents analyze their phenomenon; leveraging the
various representations they have created in or-
der to understand or expose relationships between
their markers. Strategies of filtering and data min-
ing12 are used to interrogate the data to define pat-
terns, limits and ranges of behavior. On the one
hand, students begin to define the behavior of one
marker across the series by understanding its qual-
ity with respect to parameters such as range, dis-
placement and rate of change; on the other hand
students seek out associative behaviors between
markers, defining parameterized relationships
where an attribute of one marker affects an at-
tribute of another. Once again students complete
this step with two different representations: the
filtered versions of their marked-up set where the
relationships are graphically expressed, and a text-
based expression of the extracted behaviors or
rules (Figure 3).

Up until this point, students have been exploring
algorithmic ideas without the use of computation-
specific tools. Much of the work is in fact pen and
paper in nature – carried out either through tracing
and drawing or through writing out logical expres-
sions. This again reinforces the notion that working
computationally is as much about a way of struc-

183BOOTSTRAPPING A COMPUTATIONAL DISCOURSE

turing thoughts, investigations and methodologies
as it is about specific tools.

After these initial steps, the project converges with
the skills acquired during the workshop sessions.
Working with the workshop exercises and the set of
quantifiable behaviors or rules extracted from their
analysis, students design and deploy a custom algo-
rithm to execute a sequential transformation. Stu-
dents pick a subset of the geometries emerging from
their analysis and consider them as components in
a series of transformation operations (Figure 4).
Two kinds of transformation tend to emerge. The
more basic approach transforms the position and
orientation of the component at each step through
translation, rotation and scaling, while the shape of
the component itself remains constant; the second,
more complex, approach has a transforming com-
ponent where the geometry of the component also
changes across the series. These two strategies al-
low students of all skill levels to design and develop

their code, first through sketching (now understood
as a combination of traditional visual expression and
its new counterpart pseudocode), and then through
implementation in VB/RhinoScript. In each case the
logic of the transformation is rooted in the attributes
and behaviors extracted during the analysis phase.
It is not the intention of the designed transforma-
tions to replicate or simulate the original phenome-
non. This is reinforced by the fact that the reference
for the sequential transformation is no longer the
original documentation but instead a synthesis of
the parsed, filtered and mined representations that
were created earlier.

Through these four steps of acquiring, parsing,
mining and deploying, students are exposed to and
become practiced in the four basic skills of com-
puting (algorithmic thinking, representation, pro-
gramming, design) as well as the overall concept
of automation as outlined by Denning. Algorithmic
thinking becomes familiar to students as a way of

Figure 3. Mine and Limit. Han and Shahi (2010) continue their analysis of their phenomenon by describing
relationships between elements as well as limits in their behavior.

10.35
4.02
6.38

24.76
12.05
5.89
2.50

12.25
7.78

15.46
5.99

10.80
15.22
6.87
7.42
8.12

11.89
8.61

22.70
10.23

0
8

18
26
27
48
78
97

120
136
142
148
154
172
222
241
247
267
288
302

MAX
MIN
AVG

16.62
9.23
7.04
35.73
4.67
12.55
14.07
19.87
10.52
12.90
9.92
21.25
19.97
11.61
10.17
10.29
21.78
12.22
34.18
14.97

9.71
11.32
10.18
11.74
7.77
11.79
11.63
7.73
14.14
26.19
15.89
11.53
10.89
14.76
13.69
18.27
13.58
14.33
11.48
9.12

9.54
3.80
6.61
18.58
9.11
2.06
14.87
15.54
8.96
16.07
3.86
21.16
6.06
3.04
27.62
4.48
19.47
13.29
19.60
4.26

5.45
18.42
13.28
27.11
23.09
16.86
20.74
18.85
23.04
25.08
18.42
22.78
19.68
17.61
33.83
20.93
27.41
9.77
23.56
5.89

14.37
15.10
16.41
11.93
15.37
15.04
11.54
5.37
14.77
12.54
15.03
10.10
14.17
14.57
13.26
17.28
11.58
9.87
9.94
10.11

-
-6.32
2.35

18.38
-12.70
-6.17
-3.39
9.75
-4.47
7.68
-9.46
4.80
4.43
-8.35
0.55
0.70
3.76
-3.28
14.09
-12.47

-
-7.38
-2.19
28.69
-31.06
7.88
1.52
5.80
-9.35
2.38
-2.98
11.33
-1.28
-8.36
-1.44
0.13

11.49
-9.57
21.96
-19.20

-
1.62
1.14
1.56
-3.97
4.02
-0.16
-3.90
6.41

12.05
-10.30
4.36
-0.63
0.76
-1.07
4.58
-4.69
0.75
-2.85
-2.36

-
-5.75
2.82

11.97
-9.47
-7.06
12.81
0.67
-6.59
7.11

-12.20
17.30
-15.10
-3.02
24.58
-23.15
14.99
-6.18
6.31

-15.34

32.06
20.57
25.94
65.45
29.52
18.59
4.49

31.54
31.53
8.58

22.57
7.84
4.36

23.28
43.76
15.67
48.98
13.50
6.24

35.11

-
23.40
2.31

17.55
15.96
2.73
5.36

17.63
6.54
4.10

15.06
7.55
2.15
4.59
9.13
7.51

23.29
31.88
0.08

35.79

-
11.49
5.37
39.51
35.93
10.94
14.10
27.05
0.01
22.95
14.00
14.74
3.48
18.91
20.49
28.09
33.31
35.48
7.26
28.87

42.42
19.02
16.71
34.26
18.30
21.03
15.67
33.31
26.76
30.86
15.80
8.25

10.39
14.98
24.11
16.61
39.90
8.02
8.10

43.89
65.45
4.36

24.48

35.79
0.08

12.70

39.51
0.01
19.58

43.89
8.02

22.42

-
0.73
1.31
-4.48
3.44
-0.33
-3.50
-6.18
9.40
-2.23
2.49
-4.92
4.07
0.40
-1.31
4.01
-5.70
-1.71
0.08
0.17

-
12.97
-5.14
13.83
-4.02
-6.24
3.88
-1.89
4.19
2.04
-6.66
4.36
-3.10
-2.08
16.23
-12.90
6.48

17.64
13.80
-17.67

24.76
2.50

10.46

35.73
4.67
15.48

26.19
7.73
12.79

27.62
2.06
11.40

33.83
5.45
19.59

17.28
5.37
12.92

18.38
-12.70
-0.01

28.69
-31.06
-0.09

12.05
-10.30
0.38

24.58
-23.15
-0.28

9.40
-6.18
-0.22

16.23
-17.67
0.02

time (s) length(Lt,Li)

Lt

Rt

Lj

Rj

Li

Ri

length(Li,Lj) length(Lj,Lt) Δlength(Lt,Li)) Δlength(Li,Lj)) Δlength(Lj,Lt)) Δlength(Rt,Ri)) Δlength(Ri,Rj)) Δlength(Rj,Rt)) dist(Rt,Lt) dist(Ri,Li) Δdist(Rt,Lt) Δdist(Ri,Li)length(Rt,Ri)) length(Ri,Rj) length(Rj,Rt)

VISUAL MINING: OVERAL RANGES AND LIMITS

NUMERICAL MINING

VISUAL MINING: DISPLACEMENT OVER TIME

184 DIGITAL APTITUDES + OTHER OPENINGS

structuring thoughts and methodologies. Students
are required to devise structured processes that en-
able the preparation of a set of interests for compu-
tational exploration. Developing satisfying methods
of translating qualitatively understood aspects of
a chosen phenomenon into a digitally understand-
able quantitative expression is a central issue. For
many students, confronting the disparity between
their intentions and their ability to structure these
intentions algorithmically is frustrating; especially
at first, when the necessity of abstraction reduces
the phenomenon to an apparently oversimplified
rendition. For example, one student initially inter-
ested in the complex of intensities, geometries and
movements in a cloud-filled sky became focused on
orthographic bounding shapes and their geomet-
ric centers. While seemingly reductive compared
with more qualitative or fluid design exploration,
such abstraction proved powerful in that it enabled
action by making the problem more manageable;
later, after seeking out associative relationships
between their aspects of their analysis to describe
systems of relations, the student was able to incre-
mentally increase the complexity of their study and

rely on the machine to manage the causal relation-
ships they defined – greatly diminishing any sense
of oversimplification as the project progressed.

Representation becomes a rich dimension of the
work as students invent strategies for encoding
phenomena to allow for algorithmic thinking. In
this context the challenge of representation is two-
fold in that two constituencies are being addressed:
the project’s human audience which seeks to un-
derstand the project against numerous qualitative
criteria such as experience, materiality and tecton-
ics, social impact, site impact, economy, technical
performance, to name a few; on the other hand,
for purposes of computation, the project needs to
be encoded in a discrete and unambiguous way.
Students practice moving between multiple paral-
lel modes of representation over the course of the
project. In the end, they have created a collection
of artifacts ranging from hand-drawn analytical
tracings and their digital equivalents, to hand-writ-
ten pseudocode segments and their formalized VB/
RhinoScript implementation, to the outputs of the
automation such as digitally rendered images or

Figure 4. Design and Deploy. Han and Shahi (2010) define a sequential transformation with basic geometry and
behaviors extracted from their analysis.

1

5 6 7

8 9 10

2 3 4

Draw three points A, B, C randomly within a given range
DO
 Connect the three points to make a mother triangle
 Offset the points in the x and y axis randomly within given range4.
 Connect the new points A’, B’ ,C’ to make a baby triangle
 offset the points A, B, C in the z-axis and move them in the x,y-axis
WHILE there are more triangles to draw

FOR EACH of the triangle pairs
 draw a closed polygon with vertices ABB’A’

Use the newly created polygons, in the order they were created, to loft a
surface between them

185BOOTSTRAPPING A COMPUTATIONAL DISCOURSE

digitally fabricated models. Each mode is related to
the others: the pseudocode is often supplemented
with graphical sketches of behavior, while examina-
tion of script outputs often leads students to return
to their code to refine, correct and expand. Code,
and its implication of automation, becomes part of
the students’ array of communicative tools.

Assuming the challenges of algorithmic thinking and
representation are addressed, the challenges of pro-
gramming are relatively straightforward. As a first
step, students develop a working knowledge of a
programming language, and learn to take advantage
of program development aids such as editors and
debuggers. The combination of workshops and proj-
ect-making provides students with an effective con-
text in which to learn these skills. Students translate
algorithmic processes expressed in pseudocode into
VB/RhinoScript instructions, assess the results, and
reiterate the process while building in added layers
of complexity. While the general logical flow of these

processes is easily grasped, more abstract concepts
such as the use and design of data structures are
more difficult to learn and require more attention.
Students can also expand their working knowledge
to include more than one language, as each has its
strengths and weaknesses. Understanding that the
language is a variable in the process further decou-
ples the foundations of algorithmic thinking and rep-
resentation from the specifics of a given particular
programming language.

The design/deploy exercise allows students to syn-
thesize the previous three skills into a coherent
solution for a specific problem. The domain of an
architectural design problem is vast, rich with both
qualitative and quantitative concerns. Students
are confronted with the challenge of defining and
prioritizing their own set of considerations. Within
a computational context they also need to decide
which dimensions of the problem could benefit
from computing (read automation) and begin to

Figure 5. InSense Space: An SSL project by Connor O’Grady and Harry Wei (2010). The students conceived of an
architecture that would emerge as an index of the inhabitation of a space over time. They began by developing a detail
and exploring its deployment by physical modeling at a 1:1 scale. This informed their concept of its deployment at the
site, starting as a matrix built up of these simple units, and the students then developed tools to simulate the emergence
of the environment in response to stimuli over several weeks.

186 DIGITAL APTITUDES + OTHER OPENINGS

structure its exploration. Students identify an as-
pect of their analysis and begin to test its potentials
with respect to automation by defining a sequential
transformation. At the beginning this exploration
is again somewhat frustrating, as students’ compu-
tational skills are not yet developed to equal their
other design skills. However, many students catch
on to the similarity between developing code and
developing a more familiar design project. Apply-
ing recognizable ideas of iteration, progressive de-
velopment and scalar shifts, students are able to
establish a framework for their development and
incrementally introduce more complex behavior.
The analogy of students’ non-computational design
process of moving from a state of abstraction to
resolution is invaluable in communicating the pro-
cess of developing algorithmic processes.

Thus the first phase of SSL sees the students engage
with computation, enabling them to develop project-
specific tools to structure their work as a system,
and then explore the space of that system and de-
velop it in an iterative manner to arrive at the final
proposition. The process exposes them to the skills
necessary for the conceptualization, design and ex-
ecution of a project operating within a computational
discourse in a highly structured way. At this point
in the term, roughly week 6 of 13, the foundations
necessary to becoming computational have been de-
livered, allowing the remaining time in the studio to
be used to test, reinforce and expand on these foun-
dations in a more open-ended project (Figure 5).

ENDNOTES

1 Edsger Dijkstra (1930-2002), a Turing Award
(1972) winning computer scientist known for his
contributions to the development of programming
languages, graph theory and distributed computing.
2 Andrew Kudless expressed much of this
relationship between architectural work and processing
in the introduction to “Generative Design” an advanced
elective course offered at the California College of Arts,
MEDIAlab in 2008.
(http://mlab.cca.edu/2008/12/generative-design/)
3 Denning, Peter J. “Computer Science: The
Discipline” (1999): p 3. Web. July 14, 2011 (http://
cs.gmu.edu/cne/pjd/PUBS/ENC/cs99.pdf).
This article was prepared by Denning for the fourth edition
of the Encyclopaedia of Computer Science (A Ralston and
D. Henning, Eds).
4 Kostas Terzidis elaborates on the potentials
of computation versus computerization as related to
nondeterministic processes in his book Algorithmic
Architecture (2006, Oxford: Architectural Press).
5 Kilian Axel. Design Exploration through
Bidirectional Modeling of Constraints. (2006): p 23. Web.

July 05, 2011. (http://hdl.handle.net/1721.1/33803)
This book was submitted as Kilian’s Ph. D. Thesis at
The Massachusetts Institute of Technology, Dept. of
Architecture, 2006. Advised by Takehiko Nagakura.
6 Denning. p.3.
7 Denning. p.4.
8 RhinoScript is a scripting tool, developed
by McNeel, based on Microsoft’s VBScript language.
With RhinoScript, you can quickly add functionality to
Rhinoceros 3D, or automate repetitive tasks.
(http://wiki.mcneel.com/developer/rhinoscript)
9 Grasshopper® is a graphical algorithm editor
tightly integrated with Rhinoceros 3D’s modeling tools.
(http://www.grasshopper3d.com/)
10 Mode Lab conducted the 2-day grasshopper
workshop.
(http://modelab.nu/)
11 Fry, Ben. Visualizing Data.(2007): p. 5-18.
Cambridge: O’Reily Media Inc. Print.
12 In Visualizing Data (page 5), Fry defines mining
as the application of “methods from statistics or data
mining as a way to discern patterns or place the data in
mathematical context”. Data mining is understood as the
non-trivial extraction of implicit, previously unknown and
potentially useful information from data.

